

Bachelor of Computer Application

(B.C.A.)

Relational Database Management System

Semester-III

Author- Mr. Gautam A. Kudale

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education

Mahal, Jagatpura, Jaipur-302025

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046

Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU

All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Ltd.

Printed at :

Dr (Prof.) T.K. Jain
Director, CDOE, SGVU

Dr. Dev Brat Gupta
Associate Professor (SILS) & Academic
Head, CDOE, SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU

Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU

Dr. Manish Dwivedi
Associate Professor & Dy, Director,
CDOE, SGVU

Mr. Manvendra Narayan Mishra
Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU

Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

EDITORIAL BOARD (CDOE, SGVU)

Syllabus

Relational Database Management System

Learning Objectives

- Understand the basic concepts and the applications of database systems.

- Master the basics of SQL and construct queries using SQL.

- Understand the relational database design principles.

- Familiar with the basic issues of transaction processing and concurrency control.

- Familiar with database storage structures and access techniques.

Unit I

Database System Architecture – Data Abstraction, Data Independence, Data Definitions and Data

Manipulation Languages. Data models – Entity Relationship (ER), Mapping ER Model to

Relational Mode, Network. Relational and Object Oriented Data Models, Integrity Constraints and

Data Manipulation Operations.

Unit II

Relation Query Languages, Relational Algebra, Tuple and Domain Relational Calculus, SQL and

QBE. Relational Database Design: Domain and Data dependency, Armstrong’s Axioms, Normal

Forms, Dependency Preservation, Lossless design, Comparison of Oracle & DB2.

Unit III

Query Processing and Optimization: Evaluation of Relational Algebra Expressions, Query

Equivalence, Join strategies, Query Optimization Algorithms.

Unit IV

Storage Strategies: Indices, B-Trees, Hashing, Transaction processing: Recovery and Concurrency

Control, Locking and Timestamp based Schedulers, Mult version and Optimistic Concurrency

Control Schemes. Advanced Topics: Object-Oriented and Object Relational databases. Logical

Databases, Web Databases, Distributed Databases, Data Warehouse and Data Mining.

References

- Database System Concepts by Sudarshan, Korth (McGraw-Hill Education)

- Fundamentals of Database System By Elmasari &Navathe- Pearson Education

- An introduction to Database System – Bipin Desai, Galgotia Publications

- Database System: concept, Design & Application by S.K.Singh (Pearson Education)

- Database management system by leon &leon (Vikas publishing House).

- Database Modeling and Design: Logical Design by Toby J. Teorey, Sam S. Lightstone,

and Tom Nadeau, “”, 4thEdition, 2005, Elsevier India Publications, New Delhi

- Fundamentals of Database Management System – Gillenson, Wiley India

1.

2.

Introduction to RDBMS g

1. Introduction1_1

2. Introduction to Popular RDBMS product And their Features.....".........1-1

3. Difference betra,een DBMS and RDBMS1-s
4. Relationship among Application programs and RDBMS1_T

PL/SQL 86
1. Overview of PL/SQL..,...............2-1
2. Data Types,.2-3

3. PUSQL 81ock..........2_s
3.1 Operators, Functions, Compaison, Numeie, Character. Date Z_T

3.2 ControlStatement 2-9

4. Exceptional Handling ...2-1'g
5. Functions, Procedures2_16

6. Cursor........2-206.1 What is a Cursor? 2-20
6.2 Types of Cursors 2-20
6.3 Cursor Declaration 2-23
6.3 CursorForLoops 2-25
6.4 Parameterized Cursors 2-26

7. Database Triggers......2-277.1 Types of Triggers 2-2A

8. Oracle Packages..."2-g18.1 Components of an Oracle package 2-A1

Transaction Management g4
1. Transaction Concept.....3_1

2. Transaction Properties3_2
3. Transaction States3_3

4. Concurrent Execution...3_4

5. Serializability3_95.1 Conflict Seiatizabitity 3-10
5.2 View Seriatizabitity 3-15

3.

I

s.

6. Recoverability........".......3-16
6.1 Recoverable Schedule 3-16
6.2 Cascad/ess Schedrle 3-17

41. Soneurrency Control 32

1. Concurrency Control4-1

2. l-ock tsased Protocols4-2
2.1 Locks 4-2
2.2 Granting of Locks 4-4
2.3 Twa-Phase Locking Protoeal 4-4

3. Timestamp-Based Protocols....4-B
3.1 Timestamp 4-8
3.2 Timestamp-OderingProtocol 4-g
3.3 Thomas wite rule

4. Validation-Based Protocols

4-1 1

4-12

5. Deadlock Handling,..4-14
5.1 Deadlock Prevention 4-15
5.2 Deadlock Detection 4-17
5.3 DeadlockRecovery 4-18

Reeovery System 32

1. Introduction5-1

2. Failure Classification........"..".....5-1
2.1 Transaction Failure 5-2
2.2 Sysfem Crash 5-2
2-3 Disk Failure 5-2

3. Storage Structure5-3
3.1 Storage Types 5-3
3.2 Data Access 5-4

ai. Recovery and Atomicity.." "5-5
4.1 Log-Based Recovery 5-6
4.2 Defened Database Madification 5-7
4.3 tmmediate Database Modification 5-10
4.4 Checkpoints &12

5. Recovery with Concurrent Transactions...........5-13
5.1 lntenction with Coneunency control 614
5.2 Transaction Rollback 5-14
5.3 Resfarf Recovery 5-14

6. Remote Backup Systems.....5-15

*g#S'*Sii.ts$.4r.t***-

ITDfIMS @oll o

InTRODUCTIO
elaftul, I

tu To
RDBMS

1. lntroduction

The relational model was first introduced by Ted Codd of IBM research in 1970. The relational

model represents the database as a collection of relations. Informally, each relation resembles a table

of valueJor to some extent a'ilat'file of records. In the formal relational model terminology, a row

is called 'tuple', a column header is called an 'attribute', and the table is called a 'relation'' The data

type describlng the types of values that can appear in each column is called a 'domain'.

2. Introduetion to Popular RDBMS Product And
their Features

A Relational Database Management System (RDBMS) is a Database Management System (DBMS)

that is based on relational model as inhoducedby Dr. Edger F.Codd. Most popular commercial and

open source databases currently in use are based on the relational model.

F'..'W,' l

RDBMS stores data in the form of related tables.
assumptions about how data is related or how it
database can be viewed in many different wavs.

Characteristics/Features of RDBMS

RDBMS are powerful because they require few
will be extracted from the database. The samc

i. Data independence: Application programs do not depend on
data. The skucture of data is stored separately in the system
catalog from the asses of application programs. Any updates
on data application programs are not identified.

ii. Data integrity: Components like roll back operations,
referential integrity and transaction oriented operations are
designed to ensure integrity constraints.

iii. Fast response rate: Data is centrally located so request of
data can be completed immediately.

v.

ndancy: According to relational databases data replicationo wastage of
storage space, data normalization concepts at higher level redundan"y .un be removed.
Restricting unauthorized access: RDBMS provides security and, data authorization by
creating users at different level.

vi. Multiple user interface: Many database software's are provided by using several
programming interfaces, query languages, forms, menu driven interfaces.vii. Concurrency control: This mechanism is used to manage multiple users accessing the same
resources.

viii. Backup and recovery: This facility is used for data recovery from both hardware and
software failures.

ix. RDBMS supports client server architecture.

x. It provides security, protection, maintenance, reliability and performance on operation of data.

The popular commercial RDBMS for large database includes Oracle, Microsoft Access; Microsoft
SQL Server, Sybase SQL Server and IBM'S DB2.

Products of RDBMS

i. ThinkSQL: It is a cross platform RDBMS.

ii. Microsoft access: It is an entry level DBMS from Microsoft.

iii. MySql

a. It is an open source RDBMS.
b. Available on many different platforms including

'windows,linux, I-INIX and Mac OS.

;{ffi,tH.'ii

2. Queries: Allow the user to view, change and analyze data in different ways. Queries can also
be stored and used as the source of records for forms, reports and data access pages.

3. tr'orms: Can be used for variety of purposes such as create a data entry form to enter data into
a table.

4. Reports: Allow data in the database to be presented in an effective way in a customized
printed format.

5. Pages: A (data access) page is a special type of web page designed for viewing and working
with data from the Internet or an Intranet.

6. Macros: A set of one or more actions that each performs a particular operation, such as
opening a form or printing a report.

7. Modules: A collection of VBA declarations and procedures those are stored together as a unit.

Microsoft Access can be used as a standalone system on a single PC or as a multi-user system on a
PC network. With the release of Access 2000, there is a choice of two data engines in the product:
the original jet engine and the new Microsoft Data Engine (MSDE), which is compatible with
Microsoft's back office SQL Server.

Microsoft Access provides four main ways of working with a database that is shared among users on
a network.

1. File-server solutions: An access database is placed on a network so that multiple users can
share it.

2, Client-server solutions: An access project (.adp) frle can also be created, which can store
forms, reports, macros, and VBA modules locally and can connect to a remote SQL server
database using OLE DB (Object Linking and Embedding for Databases) to display and work
with tables, views, relationships and stored procedures.

3. Database replication solutions: These allow data or database design changes to be shared
between copies of an access database in different locations without havine to redisffibute
copies of the entire datatjase.

4. Web-based database solutions: A browser displays one or more data access pages that
dynamically link to a shared access or SeL server database.

Oracle

The Oracle Corporation is the world's leading supplier of software for information management and
the world's second largest independent softwaie company. The user interacts with bracle and
develops a database using a number of objects.

The main objects in oracle are:

1. Tables: A table is organized into columns and rows.
2. Objects: A way to extend Oracle,s relational data type system.

3.

4.

f,.

6.

7.

8.

9.

Clusters: A set of tables physically stored together as one table that shares a cofilmon column'

Indexes: A structure used to help retrieve dalamore quickly and efficiently'

Views: Virtual tables.

Synonyms: An alternative name for an object in the database'

Sequences: Generates a unique sequence of numbers in cache'

Functions/Procedures: A set of SQL or PLiSQL statements used together to execute a

particular function.
packages: A collection of procedures, functions, variables and sQL

grouped together and stored as a single program unit'

10. Triggers: Code stored in the database and invoked-triggered-by-events that occur in the

application.

Features of Oracle

1. It is a Relational database management system'

2. It is used in many database applications on several operating

system platform including Unix and Windows'

3. It was the first commercial RDBMS that becomes available on

Linux.

4. It offers technology having comprehensive pre-integrated business applrcations'

5. It provides security, protection, maintenance, reliability and performance on operation on data'

6. It provides efficient and fast database recovery'

Difference between DBMS and RDBMS

A Database Management System (DBMS) is a collection of programs that enables users to create

and maintain a database. T.he pgN{S is hence a general-purpose software system that facilitates the

processes defining, constructing and manipulating database for various applications'

Defining a database involves specifying the data types, structures and constraints for the data to be

stored in the database.

Constructing the database is the process of storing the data itself on some storage medium that is

conholledby DBMS.

Manipulating a database includes such functions as querying the database to retrieve specific data,

updating thJdatabase to reflect changes in the mini world, and generating reports from the data'

statements that are

3.

For example, Let us consider the database of university for marinating information conceming
students, courses and grades in a university environment.

A relational database usually contains many relations, with tuples in relations related in various ways.

A relational database schema s is a set of relation schemas s : {R1, R2,...,Rm} and a set of
integrity constraints IC.

ln relational model all data is logically structured within relations (tables). Each relation has a name
and is made up of named athibutes (columns) of data. Each tuple (row) contains one value per atfibute.

The main difference between DBMS and RDBMS is as follows:
:;.:i:ii,.+ iiti"ii#;riiBEffi,Si;fil;ii.i.l itj iriliiiitiliiij:::,,:rir:t ii+ii8B,Hili$::rii.'iii'l

It is Database Management
Svstem.

It is Relational Database Management
Svstem.

ii. It includes theoretical oart
how data is stored in table.

It is the procedural way that includes
SQL syntax for relating tables with one
another and handling the stored data
in table.

|il. It is feasible for small
oroanizations.

It maintains relationships among large
amount of data.

iv. It does not follow
normalization concept.

It follows normalization concept.

In DBMS relationship
between two tables or files
are maintained
proqrammaticallv.

ln RDBMS relationship between two
tables or files can be specified at the
time of table creation.

vt. DBMS does not support
ClienVServer Architecture.

Most of the RDBMS supports
ClienUServer Architecture.

vii. DBMS does not support
Distributed databases.

Most of the RDBMS supports
Distributed databases.

vilt. In DBMS there is no
security of data.

ln RDBMS there are multiple level of
security like
i. Logging in at O/S level.
ii. Command level (i.e. at RDBMS

level).
iii. Obiect level.

ix. Each table is given an
extension in DBMS.

Many tables are grouped in one
database in RDBMS.

x It is single user system. It is multi-user system.

xi, Naming Gonventions
Field Column, Attributes, Data Field
Record Row. Tuole. Entitv
File Table, Relation. Entitv class

xlr. e.9., FoxPro, lMS. e.q.. SQL server. Oracle.

4. Relationship among Application Programs
and RDBMS

Here we reviewed two representative and very popular Relational Database Management System

(RDBMS) products: Oracle and Microsoft Access. We introduced the typical architecture and

functionality of a high-end product like oracle and a PC-based smaller RDBMS like access. While

we may call oracle a full-fledged RDBMS, we may call Access a data management tool that is

geared for the less sophisticated user. We have also described the main functions of the oracle

system, and reviewed some of the tools available in Oracle for database design and application

development. We have also provided an overview of Microsoft Access, its architecture and reviewed

some additional features and functionality of Access.

Application of a RDBMS

i. Banking: all kinds of transactions: The Banking

Application can look into customer processing, Account

processing, Loan processing, and address all the

functionalities of the Bank.

ii. Airlines: reservations, schedules: Reservation System could be of any type Airlines,

Railway or Bus. The processing remains almost same with few changes in the processing

which includes: customer request processing, ticket reservation, schedule processing and

finally the billing of the customers.

iii. Universities: registrationo grades: This system looks into admission processing, short listing,

entrance examination, scheduling interviews, etc. and post admission. It addresses all the

stages of a student processing, from his admission, to examination, attendance, (library

processing) and ultimately the grades.

iv. Sales: customers, products, purchases: This system looks into customer processing as

regards, enquiries, sales orders, delivery with bilt and frnally billing of the customer' Sales

could either be an extended application of purchases or retail industry. If the purchases are

considered then it involves supplier processing, quotation processing, purchase orders, billing

of suppliers and most important the inventory processing.

v. Manufacturing: Production, inventory, orders, supply chain.

WPU0uesrion$

lOet.2015 - 2Ml

lQct.l 4.1 5.Aor.1 5.1 2 - 2 Ml

IOct.2014 - 2Ml

IOct.12,Aor.10 - 2Ml

tOct.2011 - 2Ml

lApr.2011 - 2Ml

lOct.2010 - 2Ml

lOct.2009 - 2Ml

Enlist the RDBMS products.

What is RDBMS? List any two features of RDBMS.

What is RDBMS? List any two products of RDBMS.

Give any two differences between DBMS and RDBMS.

What are the main objects in MS-Access?

List four products of RDBMS.

Explain any two distinguishing characteristics of RDBMS.

What is RDBMS? State popular commercial RDBMS
Applications.

Differentiate between DBMS and RDBMS with example.

Explain any two popular products of RDBMs.

Explain any two popular products of RDBMS.

Explain any four objects of Oracle.

What are the features of oracle?

Write a note on any two products of RDBMS.

lOct.l 5.1 4.1 1. Apr.1 1 -4 Ml

IAor.2015 - 4lrrll

lOct.2012- 4Ml

lApr.2012 - 4Ml

lOct.2010 - 4Ml

lOct.2009 - 4Ml

1.

2.

J.

4.

5.

6.

o,
ul$l0ll

PU

Overview of PL/SQL

PLISQL stands for Procedural Language/ Structured Query Language. PLISQL extends SQL by

adding constructs found in procedural languages, resulting in a structural language that is more

powerful than SQL. The basic unit in PI/SQL is a block. All PL/SQL programs are made up of
blocks, which can be nested within each other. Typically, each block performs a logical action in the

program.

Though SQL is the natural language of the DBA, it suffers from various inherent disadvantages,

when used as a conventional programming language

1. SQL does not have any procedural capabilities i.e. does not provide the programming

techniques of condition checking, looping and branching that is vital for data testing before its

permanent storage.

2. SQL statements are passed to the Oracle engine one at a time. Each time an SQL statement is

executed, a call is made to the engine's resources. This adds to the traffic on the network,

thereby decreasing the speed of data processing, especially in a multi-user environment.

Qia4fet, 2

soL

1.

PU

1. Overview of PL/SQL

PL/SQL stands for Procedural Languagei Structured Query Language. PL/SQL extends SQL by

adding constructs found in procedural languages, resulting in a structural language that is more

powerful than SQL. The basic unit in PL/SQL is a block. All PLiSQL programs are made up of
blocks, which can be nested within each other. Typically, each block performs a logical action in the

program.

Though SQL is the natural language of the DBA, it suffers from various inherent disadvantages,

when used as a conventional programming language

1. SQL does not have any procedural capabilities i.e. does not provide the programming

techniques ofcondition checking, looping and branching that is vital for data testing before its

permanent storage.

2. SQL statements are passed to the Oracle engine one at a time. Each time an SQL statement is

executed, a call is made to the engine's resources. This adds to the traffrc on the network,

thereby decreasing the speed of data processing, especially in a multi-user environment.

elalrqr z

soL

3. While processing a SQL sentence if an error occurs, the Oracle engine displays its own error
messages. It has no facility for programmed handling of errors that arise during the
manipulation of data.

Although SQL is a very powerful tool, its set of disadvantages prevents it from being a fully
structured programming language. For a fully structured programming language, Oracle provides

PLlSQL.

As the name suggests, PL/SQL is a superset of SQL. PLiSQL bridges the gap between database

technology and procedural programming language.

Advantages of PL/SQL

1. PUSQL is a development tool that not only supports SQL
data manipulation but also provides facilities of conditional
checking, branching and looping

PLISQL sends an entire block of SQL statements to the
Oracle engine all in one go. Communication between the
program block and the Oracle engine reduces considerably,
reducing network haffic.

Since the Oracle engine got the SQL statements as a single
block, it processes this code much faster than if it got the code
one sentence at a time. There is a definite improvement in the
performance time of the Oracle engine. As an entire block of
SQL code is passed to the Oracle engine at one time for
execution, all changes made to the data in the table are done
or undone, in one go.

PL/SQL also permits dealing with errors as required, and facilitates displaying user-friendly
messages, when errors are encountered.

PL/SQL allows declaration and use of variables in blocks of code. These variables can be used
to store intermpdiate results of a query for later processing, or calculate values and insert them
into an Oracle table later. PL/SQL variables can be used anywhere, either in SQL statements
or in PL/SQL blocks.

Via PLISQL, all stores of calculations can be done quickly and efficiently without the use of
Oracle engine. This considerably improves transaction performance.

Applications written in PL/SQL are portable to any computer hardware and operating system,
where Oracle is operational. Hence, PLISQL code written for a DOS version of Oracle will
nm on its LinuxAlNIX version, without any modifications at all.

2.

3.

4.

5.

6.

ri$,fi?fflfff;iir-,ffis#r

relational database from varoius environments which is fully block

3.

4.

f,.

6.

Use of PUSQL

PLISQL is used to access

structured.

1. Better performance: PL/SQL processes multiple SQL

statements simultaneously which reduces network haffic'

2. Error' Handling: PL/SQL handles errors and exception

written in PL/SQL program.

It supports procedural and object oriented language'

Programmes written in PL/SQL are portable.

It has built in libraries and packages.

It has transaction processing language.

2. Data Types

Information is transmitted between a PL/SQL progftrm and the

database through variables. Every variable has a specific type

associated with it.

The variable type can be

1. One of the types used by SQL for database columns.

2. A generic type used in PL/SQL such as NUMBER'

3. Declared to be the same as the type of some database column.

Dffirent Data types in PL/SQL are:

Employee_id number;

Employee_sal
number(8,3);

var_name
number(p,s);
p - precision

s = scale

The most commonly used generic
type is NUMBER. The default data
type that can be declared in PLISQL
is number. Variables of tYPe

NUMBER can hold either an integer
or a real number.

stud_name varchar2(1 0);To store variable length character
strings with a maximum length of
4000 bytes.

Char To hold fixed length character
strings.

var_name
char(size);

stud_name char(10);

Date To store date and time. name date;var_ birth date date:
Boolean For storing TRUE, FALSE or NULL.

Note that PUSQL allows BOOLEAN
variables, even though Oracle does
not support BOOLEAN as a type for
database columns.

var_name
boolean;

stud attendance boolean:

Rowed Acts as a unique iddntifier for every
row in the database and are stored
internally as fixed length binary
quantitv.

var_name rowid; emp_rowid rowed;

%type and
% row type

Used to define variables in PUSQL
as per data type of columns, rows in
table.

%type;
%rowtype;

bname
book.bookname%type;
brec book%rowtvoe:

Number, char, varchar and date data types can have null values.

For example, we might declare:
DECLARE

pr:-ce NUMBER;

Bookname VARCHAR(20);

NOT NULL: Causes creation of a variable or a constant that cannot be assigned a null value. If an
attempt is made to assign the value NULL to a variable or a constant that has been assigned a NOT
NIILL constraint, Oracle senses the exception condition automatically and an internal error is
returned.

The initial value of any variable, regardless of its type, is NULL. We can assign values to variables,
using the "::" operator. The assignment can occur either immediately after the type of the variable is
declared, or anywhere in the executable portion of the program.

For example

DECLARE
a NUMBER := 3;

BEGTN
:!= A + 1.

END;

riilrii*iiiiiiii

3. PL/SQL Block

PL/SQL stands for Procedural Standard Query Language. The

programming language used to access relational database from

various environments is PLISQL.

PL/SQL is a block-structured language. Each of the basic

programming units that is written to build the application is (or

should be) a logical unit of work. The PL/SQL block allows to
reflect that logical structure in the physical design of the programs.

The block determines both the scope of identifiers (the area of code

in which a reference to the identifier can be resolved) and the way in
which exceptions are handled and propagated. A block may also

contain nested sub-blocks of code, each with its own scope.

There is a common block structure to all the different types of
modules. The block is broken up into four different sections, as

follows:

Header: Relevant for named blocks only, the header determines the way that the named block

or program must be called. The header includes the name, parameter list, and RETURN clause

(for a function only).

Declaration section: The part of the block that declares variables, cursors, and sub-blocks that

are referenced in the execution and exception sections. The declaration section is optional, but

if there is one, it must come before the execution and exception sections.

Execution section: The part of the PUSQL blocks containing the executable statements, the

code that is executed by the PLISQL run-time engine. The execution section contains the IF-

THEN-ELSE, LOOPs, assignments, and calls to other PL/SQL blocks. Every block must have

at least one executable statement in the execution section.

Exception section: The section that handles exceptions to normal processing (wamings and

error conditions). This final section is optional. If it is included, control is transferred to this

section when an error is encountered. This section then either handles the error or passes

control to the block that is called the current block. Following diagram shows PL/SQL block

structure for procedures and functions.

:ilrti:.i.ii.i::;! i1$iiritij*iiili,ili ir.',,i+JiL

Header (named modules only)

IS

Declaration Section

BEGIN

Execution Section

EXCEPTION

Exception Section

END;

A PL/SQL block has the following structure:

DECLARE

,/* Decl-arative section: memory variabfes, Lypes,
and constants * /

BEGIN

,/* Executabl-e section: procedural and SQL

statements go here. */

/* this is the only section of rhe block that
is required. x/

EXCEPTION

/* Fvnantinn h:ndl ina <anj-inn. drr^T -hrndI inn.^*.^** *-.J
statements qo here. */

END;

Only the executable section is required. The other sections are optional. The only SQL statements

allowed in a PL/SQL program are SELECT, INSERT, UPDATE, DELETE and several other data

manipulation statements plus some transaction control. However, the SELECT statement has a
special form in which a single tuple is placed in variablqs. Data definition statements like
CREATING, DROPPING, or ALTER is not allowed. The executable section also contains

constructs such as assignments, branches, loops, procedure calls, and triggers. PL/SQL is not case

sensitive. C style comments (l* ...*D may be used.

Comments

A comment can have twoforms:

1. The comment line begins with a double hyphen (--). The entire line will be treated as a
comment.

2. The comment line begins with a slash followed by an asterisk (*) till the occurrence of an

asterisk followed by a slash (*/). All lines within are treated as comment. This form of
specifying comments can be used to span across multiple line.

3.{ Operators, Functions, Gomparison, Numerict
Gharacter, Date

The Character Set

The basic character set includes thefollowing:

i. Uppercase alphabets {A-Z}.
ii. Lowercase alphabets {a-z}.
iii. Numerals {0-9}.
iv. SymbolsO+-* l<>:!;:.'@yo,"#$_\ { } ?t]

Words used in a PL/SQL block are called Lexical Units. Blank spaces can be freely inserted between

lexical units in a PL/SQL block. The blank spaces have no effect on the PL/SQL block.

The ordinary symbols used in PL/SQL block are

()+-*l<>:;Yo"'ll
Compound symbols used in PLISQL block are

+!-.6n:(:

Literals

A literal is a numeric value or a character string used to represent itself.

i. Numeric Literals: These can be either integers or floats. If a float is being represented, then

the integer part must be separated from the float part by a period.

Example: 52, 5.35,598, 45e-04, .2,2.e7, +48, -9

I{if i+l,Sf i,ifi$tr,}F,it?,}.,:

ii. String Literals: These are represented by one or more legal characters and must be enclosed
within single quotes. Writing it twice in a string literal can represent the single quote
character. This is definitely not the same as a double quote.

Example:

'Heflo world','Don't go without saving your work'

iii. Character Literals: These are string literals consisting of single characters.

Example: '*', 'A','u'.

iv, Logical @oolean) Literals: These are predetermined constants. The values that can be
assigned to this datatrype are: TRUE, FALSE, and NULL.

Constant

In PL/SQL the keyword CONSTANT must be added to the variable name and a value assigned
immediately

<constantname> CONSTANT (datatype) (size) : =value;

Exarnple:

PI CONSTANT number (5, 2)t -3.14;

Operators

i. Arithmetic operators

+ Addition *

- Subtraction * *

/ Division 0

Multiplication

Exponentiation

Enclosed operation

ii. Logical comparisons

PL/SQL supports the comparison between variables and constants in SQL and PL/SQL
statements. These comparisons, often called Boolean expressions, generally consist of simple
expression separated by

Relational operators 1,),:,):, (:, + that can be connected by

Logical operators AND, OR, NOT,

A Boolean expression will always evaluate to TRUE, FALSE orNIILL.

3-2 Gontrol Statement

The flow of control statement can be classified
categories:

i. Conditional Conhol

ii. Iterative Control

iii. Sequential Control

into the following

Gonditional Control

PL/SQL allows the use of an IF statement to control the execution of a block of a code. In PLISQL,
the IF-THEN-ELSEIF-ELSE-END IF construct in code blocks allows specifuing certain conditions

under which a specific block of code should be executed.

Syntasc

fF (condition> THEN
<S tatement_]i st>

ELSEIF <condition> THEN
<Statement_list>

ELSE
<Statement_list>

END TF;

Example: Write a program to find largest of two numbers.

Decl-are
A number;
B number;

Begr.n
A: =&a;
IJ:=&I);

If (A>B) then
dbms output . put line ('A is Largest') ;
t;l.se
dbms output , put line ('B is Largest') ;-';.E;no 1r ;

At least one of the statements in <loop_body> should be an EXIT statement of the form

EXIT WHEN (condition);
The loop breaks if <condition> is true.

Example: Write a program to print first 10 numbers. (1..10) (Using EXIT WHEN <condition>)

Declare
J number : =0;

Begin
Loop
ef : =J+1 ;
dbms_output, put_1ine (J) ;
EXfT when ,f)=t-0;
End loop;

End;

Iterative Control '

Simple loop
Syntax:

Loop
<Statement_list>
END LOOP;

Example:

a. Write a program to print first 10 numbers. (1..10)
Decfare

J number: =0;
Begrn

Loop
J: =J+1;
dbms_output . put_line (J) ;

If (,1>=10) then
Ejxl c i
End if;
End loop;
End;
/

b. Create a simple loop such tlat a message is displayed when a loop exceeds a particular value.
DECLARE

J= number:=0;
BEGTN

LOOP
J:=j+2;

EXTT WHEN .J>12;
END LOOP;
dbms_output.put_Iine('Loop exited as the val_ue of ,f has reached I

I I ro_char (J)) ;
END;

Output: Loop exited as the value of j has reached 14. PLiSQL procedure successfully
completed.

ffi
The \ilHILE loop

A WHILE loop can be formed with

Syntm:

WHILE <condition)
LOOP

<Statement_ list>
END LOOP;

Examples

a. Write aprogramto print first 10 numbers. (1..10)(Using while)

Declare
.f number : =0;

ijegln
While.l<=10 IooP

J: =J+1;
dbms_output . put_line (J) ;

End loop;
Eno;

b. Write a PL/SQL block to calculate the area of a circle for a value of radius varying from 2

to 8. Store the radius and the corresponding values of calculated area in an empty table named

area, consisting of trvo columns radius and area'

Table Name: area

RADIUS I AREA

Create table area as follows:

Create table area (RADIUS number (5), AREA number (1'4,2));

DECLARE
pi constant number (4,2) :=3 'L4;
radius number (5);
area number (1,4,2);

BEGlN
radius: =2;
While radius(=B

LOOP
area : =pi*power (radius, 2) ;
insert into area val-ues(radius, area) ;

radius: =radius+1;
END LOOP;

END;

Output: Table Name: area

The FOR loop
A simple FOR loop can be formed with:

Syntax:
FOR (variable> IN IREVERSE] <start>. . (end.)
LOOP

<statement list>
END LOOP;

The variable in the For Loop need not be declared. Also the increment value cannot be specified.
The For Loop variable is always incrernented by 1.

Examples:

a. Write a program to print first 10 numbers. (1..10)(Using for)
Declare
J number : =10;
Begin

For ,f in 1. .1_O loop
dpms_output.put line (J) ;

End loop;
ts nd .

b. write a PLlsQL block of code reversing a number 56g7 to 7g65,
DECLARE

lnput_no varchar (S) : =,'5687,' ;str_length number (2) ;
reversed_no varchar (5),,

BEGIN
Str_length:=length (input nol ;For cntr in reverse 1. .;tr lenqth

LOOP
reversed_no: =reversed_no | | substr (input_no, cntr,1) ;

END LOOP;
dbms_output,put_line (,The given number is, | | input no) ;dbms-output,put-line('The ieversed number isi r r.";"-rsed no).
END;

vvu-lrvl
'

Output:

The given number is 5687
The reversed number is 7865

4. Exceptional Handling

v.

vi.

vii.

viii.

ix.

X.

xi.

xii.

xiii.

predefined

no_data_found,

cursor already-open,

dup_val_on_index,

storage_error,

program_enor,

zero_divide,

invalid_cursor,

login_denied,

invalid_number,

too_many_rows,

DBMS_output,

user defined exceptions

Error Handling in PUSQL

Every PL/SQL block of code encountered by the Oracle engine is accepted as a client. Hence the

Oracle engine will make an attempt to execute every SQL sentence within the PL/SQL block.

However while executing the SQL sentences anything can go wrong and the SQL sentence can fail.

When an SQL sentence fails the Oracle is the first to recognize this as an exception condition. The

Oracle engine immediately tries to handle the exception condition and resolve it. This is done by

raising a built-in exception handler.

An exception handler is nothing but a code block in memory that will attempt to resolve the current

exception condition.

Oracle's named Exception Handlers

The Oracle engine has a set of pre-defined Oracle error handlers called named exceptions. Theses

error handlers are referenced by their name. The following are some pre-defined named exception

handlers.

There are two classes of exception:

Predefined exception: Oracle predefined errors, which are associated with specific
codes.

ii. User defined exception: Declared by the user and raised when specifically requested within a
block. You can associate a user-defined exception with an error code if you.wish.

There are two methods of defining exception by user.

RAISE statement: If you explicitly need to raise an error then RAISE statement is used and
you have to declare an exception variable in declared section.

Example:
T)ac I a r o

T_sa1 number (8,21 ;
NEAGTIVE_SALARY EXCEPTION;

Begin
Select sal into t saf
From emp
Where empname= "Mr . Mahesh,, ;

Ift_sal<0then
Raise NEAGTIVE SALARY;

_f;_L se
Update emp set salary=10000
Where empname= "Mr . Mahesh,, ;

End 1f;
Commi t ;

Exception
When no_data_found then
dbms_output . put_fine (,record not found') ;
When NEAGTIVE_SALARY then
dbms_output.put_line ('salary is negative') ;

Encl ,'

Here PLISQL raises user_defi ned NEAGTME_SALARY exception.

RAISE-APPLICATION-ERROR Statement: The RAISE APPLICATION ERROR takes
two input parameters: the error number and error message. The error o.t-b"r must be
between -20001 to -20999. You can call RAISE_APPLICATION ERROR from within
procedures, functions, packages and triggers.

Decl-ar e
T_sal- number (8,2);

Begin
Select sal into t sal
From emp

u.

Where €mPoame="Mr .Mahesh" ;

Update emp set salary=10000
Where eftPnama="Mr'Mahesh" ;

Commit;
ExcePt i on

When no-data-found then
RATSE-APPLICATION-ERROR (-20005,'Record is not found') ;

!.;nq;

Pre-determined internal PUSQL exceptions

DUP_VAL-ON-INDEX
Raised when an insert or update attempts to create two rows with

duplicate values in columns constrained by a unique index'

LOGIN-DENIED
Raised when an invalid username/password was used to log onto

Oracle.

NO DATA FOUND Raised when a select statement returns zero row.

PROGRAM-ERROR Raised when PUSQL has an internal problem.

TOO MANY ROWS
Raised when a select statements returns more than one row to

be mapped into a set of variable.

NOT-LOGGED_ON
iaised when PUSQL issues an Oracle call without being logged

onto Oracle.

TIMEOUT-ON-RESOURCE
Raised when Oracle has been waiting to access a resource

bevond the user-defined timeout limit.

VALUE ERROR Raised when the data type or data size is invalid.

lnvalid number Raised when the data-type or data size or nurnle!!!-lnvajjg

Cursor already-open Raised when SQL cursor is oPen.

OTHERS Stands for all other exceptions not explicitly named'

Displaying user Messages on the VDU screen

programming tools require a method through which messages can be displayed on the VDU screen'

DBMS_OUTpUT is a package that includes a number of procedures and functions that accumulate

information in a buffeiso that it can be retrieved later. These functions can also be used to display

messages.

pUT_LINE puts a piece of information in the package buffer.followed by an end-of-line marker' It

can also be used to display message. PUT_LINE expects a single parameter of character data type'

If used to display message, it is the message string.

To display message, the SERVEROUTPUT should be set to oN. SERVEROUTPLn is a sQL*
pLUS environment parameter that displays the information passed as a parameter to the PUT-LINE

function.
Syntax

SET SERVEROUTPUT [ON/OFF]

Functions, Procedures

A procedure or function is a logically grouped set of SQL and PLlSeL statements that perform a
specific task. A stored procedure or function is a named PL/SQL code block that has been compiled
and stored one of the Oracle engines system tables.

To make a procedure or firnction dynamic either of them can be passed parameters before execution.
A procedure or function can then change the way it works depending upon the parameters passed
prior to its execution

Procedures and functions are stored in the Oracle database. They can be invoked or called by anyPLlsQL block that appears within an application. Before a procedure or firnction is stored, the
Oracle engine parses and compiles the procedure or function.

The compilation process of procedures and functions does not display the errors. These errors can be
viewed using the select statements;

SELECT * FROM USER_ERRORS;

Procedure and functions are made up of
i. A declarative part
ii. An executable part
iii. An optional exception-handling part

Creating Stored Procedures

Syntax:

CREATE OR REPLACE PROCEDURE
ISchema.] (procedureName>

, (<Argument> {IN, OUT, IN OUT} <Data type), ...){rs, As}
(Variable decfarations> i
<Constant declarations> i

BEGTN

<PLISQL Subprogram body> ;
EXCEPTION

(Exception PL/SOL block>,.
END;

Keyrords and parameters

The keywords and parameters used for creating database procedures are explained below:

Greating a Function

Syntm:

CREATE OR REPLACE FUNCTION [Schema.] (FuncIionName>

((Argument) IN (Data type) , ...)

RETURN <Data type> {fS, AS}

(Variable declarations> ;

<Constant declarations> ;

BEGIN

<PL/SQL Subprogram body> ;

EXCEPTTON

(Exception PLISQL block) ;

END;

OR REPLACE

Recreates the procedure if it already exists. This option is used to change
the definition of an existing procedure without dropping, recreating and
re-granting object privileges previously granted on it. lf a procedure is

redefined the Oracle engine recompiles it.

Schema
ls the schema, which contains the procedure. The Oracle engine takes the
default schema to be the current schema. if it is omitted.

Procedure ls the name of the procedure to be created.

Argument
ls the name of an argument to the procedure. Parentheses can be omitted
if no arguments are present.

IN Indicates that the parameters will accept a value from the user

OUT Indicates that the oarameters will return a value to the user.

IN OUT
Indicates that the parameters will either accept a value from the user or
return a value to the user.

Data type
ls the data type of an argument? lt supports any data type supported by
PL/SQL.

PUSOL
Subprogram body

ls the definition of procedure consisting of PUSQL statements.

Keywords and Parameters

The keywords and parameters used for creating database functions are explained below.

Deleting a stored procedure or function

A procedure or function can be deleted by using the following syntax:

Syntm:

DROP PROCEDURE (ProcedureName) ;

Example:

DROP PROCEDURE proc empsalcheck;

Output:

Procedure dropped

Syntm:

DROP FUNCTION (FunctionName) ;

Example:

DROP FUNCTfON f_empacctcheck;

Output:

Function dropped

OR REPLACE

Recreates the function if it already exists. This option is used to change
the definition of an existing function without dropping, recreating and
re-granting object privileges previously granted on it. lf a function is
redefined the Oracle engine recompiles it.

Schema ls the schema, which contiains the function. The Oracle engine takes the
default schema to be the current schema, if it is omitted.

Function ls the name of the Function to be created.

Argument ls the name of an argument to the function. Parentheses can be omitted if
no arguments are present.

IN Indicates that the parameters will accept a value from the user.

RETURN Data type
ls the data type of the function's return value. Because every function
must return a value, this clause is required. lt supports any data type
supported by PUSQL.

PUSOL
Subprogram body

ls the definition of function consisting of PUSQL statements.

{i#,.tiifiilL,ii,!.#.,ffi

Example of Function, Procedure

i. Write a script for the following

Accept the name of an actor from the user and for the specified actor list the details of all the

movies the actor has acted in.

The function name is get_movie0, accepts name of the actor from the user and returns details

of all the movies the actor has acted in it. The following are the relations,

create tabl-e movie
I

m_no integer,
m name cext,
.rf.. i ni- adar
J vq! 4rrvvJv4

);
creaLe table acLor
(

act_no integer,
act_name text

);
create table mov_act
(

m nn .int-F.ter references movie (mv no) on delete cascade'
Jvr !

act_no integer references actor (act_no)on delete cascade,
rate integer

);
PL-SQL Block

create or replace procedure get_movie(act_name in varchar2)
AS

cursor c1 is select m-name,Yeax
f rom movie, actor, mov-act
wher e movi-e . m_no=mov-act' m-no
and actor'act-no = mov-act'act-no
and actor.act name: act name;

^ ^'l
I t nr.t l- \tha .vJ vv t

begin
open c1;
loop

fetch c1 into c;
exit when c1?notfound;
dbms_output . Put_line
rll-rma nrrfn'rt nrrt]ingwltlD_vuLlruL ' lJuu_
dbms_output , put_line
dbms_output . Put_line

| ***** ACTOR

'ACTOR NAME:'
'MOVIE NAME: I

'RELEASE YEAR

INFORMATION
lra]- namo\.
ln m namol .

t lla rrorr.)'
| | v , J vs! / ,

***** ,);

end l-oop;
close c1;
and '

Gursor

6.1 What is a Gursor?

The oracle engine uses a work area for its internal processing in order to execute an SeL statement.
This work is private to SQL's operations and is called a cursor.

The data that is stored in the cursor is called as Active Data Set. Conceptually, the size of the
cursor in memory is the size required to hold the number of rows in the Active Data Set. The Oracle
engine determines the actual size, built in memory management capabilities and the amount of RAM
available; oracle has a predefined area in main memory set aside, within which crusors are opened.
Hence the cursor's size will be limited by the size of this pre-defined area.

The values retrieved from a table are held in a cursor opened in memory by the oracle,s engine. This
data is then transferred to the client machine via network. In order to hold this data, a cursor is
opened at the client end. If the number of rows rehrned by the Oracle engine is more than the area
available in the cursor opened on the client, the cursor data and the rekieved, datzare swapped
between the operating system's swap area and RAM.

6.2 Types of Gursors

There are two types of cursors:

Implicit Cursor: Cursors are classified depending on the
circumstances under which they are opened. If the oracle
engine opened a c'rsor for its internal processing it is known
as an Implicit Cursor.

Explicit Cursor: A cursor can also be opened for processing
data through a PL/SQL block, on demand. Such a user_
defined cursor is known as an Explicit Cursor.

1.

2.

General cursor attributes

When the Oracle engine creates an implicit or explicit cursor, cursor control variables are also

created to conhol the execution ofthe cursor. There are a set offour system variables, which keeps

track ofthe current status ofa cursor. These cursor variables can be accessed and used in a PLiSQL
code block.

Both implicit and explicit cursors have four attributes.

They are described below.

Implicit Cursor: The Oracle engine implicitly opens a cursor

on the server to process each SQL statement. Since the

implicit cursor is opened and managed by the Oracle engine

internally, the function of reversing an area in memory,
populating this area with appropriate data, processing that data

in the memory area, releasing the memory area when the

processing is complete is taken care by the Oracle engine.

The resultant data is then passed to the client machine via the

network. A cursor is then opened in memory on the client
machine to hold the rows returned by the Oracle engine. The

number of rows held in the cursor on the client is managed by
the client's operafing system and it's swap area.

Implicit cursor athibutes can be used to access information about the status of the last insert,

update, delete or single-row select statements. This can be done by preceding the implicit
cursor athibute with the cursor name (i.e. SQL). The values of the cursor athibutes always

refer to the most recently executed SQL statements, wherever the statements appears. If an

attribute value is to be saved for later use, it must be assigned to a (Boolean) memory variable.

Retums TRUE if cursor is open, FALSE

otherwise.

Returns TRUE if record was fetched successfullv,

FALSE otheruise.

Returns TRUE if record was not fetched

Returns number of records processed from the

cursor.

,

lii+iii+X+liiiiiii1l,1F

Explicit Cursor: When individual records in a table have to be processed inside a PL/SQL
block a cursor is used. This cursor will be declared and mapped to an SQL query in the
Declare Section of the PL/SQL block and used within its Executable Section. A cursor thus
created and used is known as an Explicit Cursor.

Explicit cursol attributes are asfollows:

ii:H. , iiii;!'iiiiiri,r,ii riitittiiiltr'i

%ISOPEN
Evaluates to TRUE, if an explicit cursor is open, or to FALSE, if it is
closed. The syntax for accessing this attribute is
CursorName%ISOPEN.

%FOUND

Evaluates to TRUE if the last fetch succeeded because a row was
available; or to FALSE, if the last fetch failed because no more rows
were available. The syntax for accessing this attribute is
CursorName%FOUND.

%NOTFOUND

ls the logical opposite of %FOUND. lt evaluates to TRUE, if the last
fetch has failed because no more rows were available; or to FALSE, if
the last fetch returns a row. The syntax for accessing this attribute is
CursorName %NOTFOUND.

%ROWCOUNT
Returns number of rows fetched from the active set. lt is set to zero
when the cursor is opened. The syntax for accessing this attribute is
CursorName%ROWCOUNT.

icit cursor attributes are 0s

%I56PEN

The Oracle engine automatically opens and closes the SeL
statements that have been processed in case of implicit cursors.
Thus the SQL%ISOPEN attribute of an implicit cursor cannot be

referenced outside of its SQL statement. As a result.

SQL%ISOPEN always evaluates to FALSE.

Evaluates to TRUE if an insert, update or delete affected one or
more rows, or a single-row SELECT returned one or more rows.

Otherwise it evaluates to FALSE. The syntax for accessing this

attribute is SQL%FOUND.

ls the logical opposite of %FOUND. lt evaluates to TRUE, if an

insert, update or delete affected no rows, or a single-row SELECT

returns no rows. Otherwise, it evaluates to FALSE. The syntax for
this attribute is SQL%NOTFOUND.

Returns number of rows affected by an insert, update or delete or
select into statement. The syntax for accessing this attribute is

SQL%ROWCOUNT.

iiliiii.'iiiriiiiii,ilffi

Explicit arsor Management

The steps involved in using an explicit cursor and

manipulatingdata in its active set are,

i. Declare a cursor mapped to a SQL select statement that

retrieves data for processing.

Open the cursor.

Fetch data from the cursor one row at a time into memory variables.

Process the data held in the memory variables as required using a loop.

Exit from the loop after processing is complete.

Close the cursor.

6.3 Gursor Declaration

A cgrsor is defined in the declarative part of a PL/SQL block. This is done by naming the cursor and

mapping it to a query. When a cursor is declared, the Oracle engine is informed that a cursor of the

said name needs to be opened. The declaration is only intimation. There is no memory allocation at

this point in time. The three commands used to control the cursor subsequently are open' fetch and

close.

The functionatity of open, fetch and close commands-

lnitialization of a cursor takes place via the open statement, this:

i. Defines a private SQL area named after the cursor name.

ii. Executes a query associated with the cursor.

iii. Retrieves table data and populates the named private SQL area in memory i-e- creates the

Active Data Set.

iv. Sets the cursor row pointer in the ActiveData Set to the first record.

A fetch statement then moves the data held in the Active Data Set into memory variables. Data held

in the memory variables can be processed as desired.

A fetch statement is placed inside a loop...end loop construct, which causes the data to be fetched
into the memory variables and processed until all the rows in the Active Data Set axe processed. The
fetch loop then exits. The exiting of the fetch loop is user controlled.

After the fetch loop exits, the cursor must be closed with the close statement. This will release the
memory occupied by the cursor and its Active Data Set. A PL/SQL block is necessary to declare a
cursor and create an Active Data Set. The cursor name is used to reference the Active Data Set held
within the cursor.

Syntm:

CURSOR CursorName IS <SELECT statement);

Opening a Cursor

Opening a cursor executes the query and creates the active set that contains all rows, which meet the
query search criteria' An open statement refrieves record from a database table and places the records
in the cursor (i.e., named private SQL area in memory). A cursor is opened in the server memory.

Synta-r:

OPEN CursorName;

Fetching a record from the cursor

The fetch statement retrieves the rows ftom the active set opened in the server into memory variables
declared in the PLISQL code block on the client one row at a time. The memory variables are
opened on the client machine. Each time a fetch is executed, the cursor pointer is advanced to the
next row in the Active Data Set.

A standard loop structure (loop-End Loop) is used to fetch records from the cursor into memory
variables one row at a time.

Syntax:

FETCH CursorName INTO Variabl-el-, yarabl-e2,

There must be a memory variable for each column value of the Active Data Set. Data types must
match' These variables will be declared in the DECLARE section of the pLiSeL block.

Glosing a cursor

The close statement disables the cursor and the active set becomes undefined. This will release tle
memory occupied by the cursor and its data set both on the client and on the server.

Syntax:

CLOSE CursorName;

Once a cursor is closed, the reopen statement causes the cursor to be opened.

6.3 Gursor For Loops

Another technique commonly used to control the Loop...End Loop within a PL/SQL block is the

FOR variable IN value construct. This is an example of a machine defined loop exit i.e., when all

the values in the FOR construct are exhausted looping stops.

Syntax:

FOR memory vari-ab1e IN CursorName

Here, the verb FOR automatically creates the memory variable of the ohrowtype. Each record in the

opened cursor becomes a value for the memory variable of the o/orowtype.

The FOR verb ensures that a row from the cursor is loaded in the declared memory variable and the

loop executes once. This goes on until all the rows of the cursor have been loaded into the memory

variable. After this loop stops.

A cursorfor loop automatically does thefollowing:

1. Implicitly declares its loop index as a o/orowtype record.

2. Opens a cursor.

3. Fetches a row from the cursor for each loop iteration.

4. Closes the cursor when all rows have been processed.

A cursor can be closed even when an exit or a goto statement is used to leave the loop premafluely,

or if an exception is raised inside the loop.

Example:

Declare cursor c-actname is se]ect aname, rate, mvno from actor;
Begin
For y i-n c_actname
Loop
Dbms_output.put_line(y.mvno I l

.-
| ly.anamel l'' I ly'rate) ;

End loop;

ii+tiil#firlf;:?fffi
6.4 Parameterized Gursors

Till now, all the cursors that have been declared and used fetched a
pre-determined set of records. Records, which satisfy conditions, set
in the WHERE clause of the SELECT statement mapped to the
crusor. ln other words, the criterion on which the Active Data Set is
determined is hard coded and never changes.

commercial applications required that the guery, which, defines the cursor, be generic and the data
that is retrieved from the table be allowed to change according to need.

Oracle recognizes this and permits the creation of parameterized cursors for use. The contents of a
patameterized cursor will constantly change depending upon the value passed to its parameter.

Since the cursor accepts user-defined values into its parameters, thus changing the result set
extracted, it is called as parameterized cursor.

Declaring a Parameterized Cursor

Syntax:

CURSOR CursorName (VariableName Datatype) IS <SELECT statement...>

opening a Parameterized cursor and passing varues to the cursor
Syntax:

OPEN Cur sorName (Va1ue /Var i abl e/expr es s ion)

The scope of cursor parameters is local to that cursor, which means that they can be referenced onlywithin the query declared in the cursor declaration. Each parameter in the declaration must have a
corresponding value in the open statement.

Example of Parameterized Cursor

Here is the example of Parameterized cursor. To print department wise list of employees, we passed
department number as a parameter to a cursor. Following are the two relations,
oreate t.able dept
(

d_no integer,
d name text,

);
create table emp
(

emp_no 1nteger,
e_name texc,
basic_salary float,
A nn .i niaday rof aroncaq rjent (fl nn\ nn dol atp casaadeu IIU fIlLsV9r ru!9Isrfu9o uvvu \s_rrv/ vrr uvrv

);

PL-SQL Block

declare
cursor c1 is select d-no from dept;
cursor c2(dno number) is sefect d-name,e-name

where dept'd-no=emp.d-no and emp.d-no
group bY d_name, e_name;

c c.1%rowtype;
A ^r9Y^r^tf \tna.vrr vJ yv t

begin
open c1;
loop

fetch c1 into c;
exit when cl?notfound;
open c2 (c.d no) ;

loop
fetch c2 into d;
exit when not found;
dbms_output . put-line (d' d-name | |

end loop;
cfose c2;
end loop;

cf ose cl-;
anrl .

€rnm amn rlanf! ! vIL vrLLy , svy u

= dno;

tllAanama)'

7. Database Triggers

Database triggers are database objects created via the SQL* Plus tool on the client and stored on the

server in the Oracle engines system table.

These database obiects consists of thefollowing distinct sections

1. A named database event

2. A PL/SQL block that will execute when the event occurs

The oracle engine allows the definition of procedures that are implicitly executed (i.e. executed by
the Oracle engine itself), when an insert, update or delete is issued against a table from SeL* plus or
through an application. These procedures are called database triggers. The major issues that make
these triggers standalone are that, they are fired implicitly (i.e. internally) by the Oracle engine itself
and not explicitly i.e. called by the user.

7.1 Types of Triggers

Following are the types of the database triggers:

i. Row triggers

ii. Statement triggers

iii. Before triggers

iv. After triggers

v. Combinations triggers

vi. Before statement trigger

vii. Before row trigger

viii. After statement trigger

ix. After row trigger

Syntax for Creating a Trigger
CREATE OR REPLACE TRIGGER [Schema. J <triggerName)

{BEFORE, AFTER}
{DtrT E"TE TrreFtu4uuLD, .,roaRT, UPDATE IOF Column,,..]]

oN lSchema.] (Tabl-eName)

IREFERENCING {oLD As old,NEW AS new}]
IFOR EACH ROWIWHEN Condirion] l

DECLARE
(Variable decl_arations> ;
<Constant declarations) ;

BEGIN
<PLlSeL Subprogram body> ;

EXCEPTION
(Exception pLlSeL block>;

END;

Keywords and Parameters

The kevwords and the Darameters used for creating database triggers are explained below

OR REPLACE
Recreates the trigger if it already exists. This option can be used to change the
definition of an existing trigger without requiring the user's to drop the trigger
first.

Schema
ls the schema, which contains the trigger. lf the schema is omitted, the Oracle
enqine creates the triqqer in the user's own schema.

Triqqername ls the name of the trigger to be created.

BEFORE
Indicates that the Oracle engine fires the trigger before executing the triggering
statement.

AFTER
Indicates that the Oracle engine fires the trigger after executing the triggering
statement.

DELETE
lndicates that the Oracle engine fires the trigger whenever a DELETE
statement removes a row from the table.

INSERT
Indicates that the Oracle engine fires the trigger whenever an INSERT
statement adds a row to table.

UPDATE

Indicates that the Oracle engine fires the trigger whenever an UPDATE
statement changes a value in one of the columns specified in the OF clause. lf
the OF clause is omitted, the Oracle engine fires the trigger whenever an
UPDATE statement changes a value in any column of the table'

ON
Specifies the schema and name of the table, upon which the trigger is to be

created. lf schema is omitted, the Oracle engine assumes the table is in the
users own schema. A triqqer cannot be created on a table in the schema SYS.

REFERENCING

Specifies conelation names. Correlation names can be used in the PL/SQL
block and WHEN clause of a row trigger to refer specifically to old and new
values of the cunent row. The default correlation names are OLD and NEW. lf
the row trigger is associated with a table named OLD or NEW, this clause can
be used to specify different correlation names to avoid confusion between
table name and the correlation name.

FOR EACH
ROW

Designates the trigger to be a row trigger. The Oracle engine fires a row
trigger once for each row that is affected by the triggering statement and
meets the optional trigger constraint defined in the WHEN clause. lf this clause
is omitted the trigger is a statement trigger.

WHEN

Specifics the trigger restriction. The trigger restriction contains a SQL condition
that must be satisfied for the Oracle engine to fire the trigger. This condition
must contain correlation names and cannot contain a query. Trigger restriction
can be specified only for the row trigger. The Oracle engine evaluates this
condition for each row affected by the triggering statement.

PUSQL BLOCK ls the PUSQL block that the Oracle engine executes when the trigger is fired.

The PL/SQL block cannot contain transaction conhol SQL statements (COMMIT, ROLLBACK,

and SAVEPOINT)

ffi:#
Deleting a Trigger

Syntax:

DROP TRIGGER <TriggerName) ;

where, TriggerName is the name of the trigger to be dropped.

Example of Trigger

A trigger that will take care of the constraint that movie released after 2005 be entered in the movie
table. Following are the relations,
create table movie
(

mv_no integer,
mv_4ame text,
rol \/a^r int-a,! v*_r v-^r -..--Jer

);
create table aclor
(

aat nn inl-oao-----v-r,
act_name texb

);
create table ma
(

mv_no lnteger references movie (mv_no) on delete cascade,
aaf n^ inl-oaav ,6€^-^-^^^ -^ts.rerererruesi d.cLor (act no) on delete cascade

);
PL-SQL Block
ATOATa nr vonl a^6 lriaa^- F h^t' anntrv! !s!,rqee tr]-gger t_mov_2005
bef ore insert or rrndate r^rn mnrri e
for each row

begin
if(:new.relyear < 2005) then

r:i qo ennl i nari an arrar | -)A,!qaDs a1,lrtruauavrr v!!v! \-avOI,, YEAR SHOULD BE > 2005,) ;
end if;

and.

8. Oracle Packages

A package is an Oracle object, which holds objects within it. Objects

commonly held within a package are procedures, functions,

variables, constants, cursors and exceptions. The tool used to create

a package is SQL* plus. It is a way of creating generic,

encapsulated, re-usable code.

Packages can contain PL/SQL blocks of code, which have been written to perform some process

entirely on their own. These PL/SQL blocks of code do not require any kind of input from other

PLISQL blocks codes. These are the packages standalone subprograms.

8.{ Gomponents of an Oracle package

A package has usually two components, a specification and a body. A package's specification

declares the types (variables of the record type), memory variables, constants, exceptions, cursors

and subprograms that are available for use.

Package Specification: The package specification contains :

1. Name of the package.

2. Names of the data types of any arguments.

3. This declaration is local to the database and global to the package.

This means that procedures, f,rnctions, variables, constants, cursors and exceptions and other objects

declared in a package are accessible from anywhere in the package. Therefore, all the information a

package needs to execute a stored subprogtam is contained in the package specifications itself.

Syntax:

CREATE [oR REPLACE] PACKAGE package_name

irs/ AS] Pl-lsQL_package_spec

Example:
CREATE OR REPLACE PACKAGE mypack AS

PROCEDURE myproc (p_number in nurnber);
FUNCTION myfunction (f number in number);

END mypack;

)

Ĵ.

Advantages of Packages

1. Packages enable the organization of commercial applications into clliciclrt rrrothrlcn. tirrt:lr
package is easily understood and the interfaces between packages arc sinrplc, clcrrl rrrrl wc.,ll
defined.

Packages allow granting privileges efficiently.

A packages public variables and cursors persist for the duration ofthe session. Thereforc all
cursors and procedures that execute in this environment can share them.

Packages enable the overloading of procedures and funcfions when required.

Packages improve performance by loading multiple objects into memory at once. Therefore,
subsequent calls to related subprograms in the package require no VO.

Packages promote code reuse through the use of libraries that contain stored procedures and
frrnctions, thereby reducing redundant coding.

4.

5.

6.

F'ollowing are the solved examples of PL|SQL Block using all types of Control statements,
Function, cursor, Parameterized cursor, Trigger using all types of trigger etc.

1.

create table doctor
(

rinc nn infonor

doc_name text,
address text,
city text,
area text,

);
create table hosp
(

hosp_no integer,
'l-

^^^ ---^
!^-.!llvDI, rlarug UY u,

L^^'- ^jrruDv uf Ly LYIL,

);
create table doc hosp
(-

doc_no integer references doctor (doc_no) on d.elete cascade,
hosp_no integer references hosp(hosp no) on delete cascade,

Script to list the names of doctors who visit every hospital located in the city where they

do not live.

PL/SQL BLOCK

declare
cursor cl- is select doc-nQ,doc-name,city

from doctor;
cursor c2 (dcity varchar2) is select hosp-no

from hosp;
where hosp-city () dcity;

cursor c3 (dno number,hno number) is
from doc_hosp;
where doc_no = dno;
and hosp_no = hno;

c clSrowtype;
d c2trowtype;
e c3trowtype;

begin
open cL;
l-oop
fetch c1 into c;
exit when clSnotfound;

open c2 (c. city) ;

loop
fetch c2 into d;

exit when c2?notfound;
open c3 (c.doc_no,d.hosp_no) ;

loop
fetch c3 into e;

exit when c38notfound;
dbms-output, Put-line (' DOCTOR

end l-oop;
close c3;

end loop;
close c2;

end loop;
close c1;

end;

select doc_no,hosp_no

= | l la dnn namol.
ttviuvv_rr

ii. A script of cursor to print the list showing the do

PL/SQL BLOCK

rianl:ro

cursor c1 is sefect doc_name,hosp_name
from doctor, hospital, doc_hos where
doc_hos . doc_no=doctor . doc_no
and doc_hos . hosp_no=hospi tal- . hosp_no
group by doc_name, hosp_name;

list showing the doctor wise

c c-1 9rnr^rf rrna 'eJ vv ,

begin
dbms_output , put_line ('DocName | | '
open c1;
loop
fetch c1 into c;
exit when cl8notfound;

dbms_output.put line (c. doc
end loop;
cfose c1;

end;

' I lHospName) ;

namel l l I lc.hosp_name);

2.

create table item
(

i'|-om nn inl-aaz- __..._--_ r^.__y3r,
item_name text,
qty integer

);
create table supp
(

supp_no integer ,

supp_name .text,
arJdzocc l- avi-

city text,
^h6^

;6+^^^-
}/rrrrv frrL9v9I

),
create table item_supp
(

item_nointeger references item(item_no) on del-ete cascade,

supp_no integer leferences
*-t^ i..f^^^Y!aLE r11L9Vs!,

discount integer

supp(supp-no) on delete cascade,

);

i. Define a trigger before updation on discount field, if the difference in the old discount

and new discount be entered is > 57o raise an exception and display corresponding

message.

PL/SQL Block

create or replace trigger t-itemsup
Lrefore rrndat-e of discount of it supv \^YV\4vv

for each row
decfare

otddisc it_sup. discount?tYPe;
newdisc it sup.discountBtYPe;
diff number;

begin
olddisc : = : old. discount ;

newdisc : = : new. discounl ;

dif f : :newdisc - olddisc ;

if(diff > oldd:sc/20) then
rthmc. nrrrnrf nrf I ine('Difference bet new and old discount should be
uvrL'o vq uys u r yu u_+ 4

less than 5%') ;

end if;
end;

ii. Write a script to list the suppliers who live in same city but supply different set of items.

PL/SOL Block

declare
cursor c1 is sel-ect supp'supp-no, iLem' item-no, supp-name,city

from supp, item, item_suPP

where supp, supp-no=item-supp. supp-no

and i tem. j-tem_no=i tem-supp . item-no ;

cursor c2 (sno number) is select supp-name,city, item.item-no
f rnm <rrnr;, item, item. supp

where supp. supp_no<> sno

and supp. supp_no=item_supp. supp_no
and i-tem. item_no=item_supp. item no;

c clSrowtype;
d c2Srowtype;

begin
open c1;
loop

fetch c1 into c;
exit when clSnotfound;
open c2 (c. supp no) ;
loop

fetch c2 into d;
exit when c2tnotfound;

if (c. city = d. ciry) then
if (c. item_no <> d. item_no) then

dbms_output, . put_l ine (c . supp_name
I

end if;
ond i f.

end l_oop;
close c2,'

end loop;
close c1;

ond.

I d. supp_name | | c. ciry)

3.

create t.ab1e dept
(

dept_no integer ,
dept_name text,
location text

).
craal-F j-ahla amn

(

emp_no integer
emp_name text,
sex text,
joining date date,
aesignaiion texr,
qa Iarrr f I nat-

dept_nointeger references dept (dept no) on delete cascade

i. Write a script to list the names of all employees who are men and earning maximum
salary in their department.

PL/SQL Block
declare

cursor c1 is sel-ect dept_no,depl_name from dept;
cursor c2(dno number) is select emp_name from emp,depE

where emp.salary in (select max(salary),emp.emp_name
from emp,dept where emp.dept_no=dno
and dept.dept_no=emp.dept_no and sex= rml

group by dept.dept no);
n n19rnr^rl-rrno'

d c2trowtype;
begin

open c1;
loop
fetch c1 into c;
exit when cltnotfound;
open c2 (c. dept no) ;

Ioop
fetch c2 into d;
exit when c2Snotfound;

dbms_output.put_line (c. dept_name | | d. emp_name) ;

eno loop;
close c2;
end loop;
close c1;

end;

ii. Write a script to give raise in salary by SYo for all the employees earning less than 10000

andgo/o for all employees earning more than or equal to 10000. Also print total numbers

of employees in each case.

PL/SQL Block

declare
cursor c2 ts seleet emp_no,salary from emp,dept

where dept. dept_no=emp. dept_no ;

c c2Srowtype;
cntl- number;
cnt2 number;

beqin

ffi
nnl- T . =fl'

cnt2 : =0;
open c2;
loop
fetch c2 into c;
exit when c2?notfound;
if (c.sal-ary < 10000) then

update emp set salary - safary * salary*6.65
r^7hara amn r-.,,o,3RP nO = C.emp no;

-nf1 ' = -nl-i +- '

end if;
if(c.salary >= 10000) then

update emp set salary = salary + salary * 0.09
where emp.emp no = c.emp no;

cnt2i=cnt2+1;
end if;

end loop;
close c2;

A]-.ma a.'rn-'f nrrl- Iino1tNInUUIILD VUUtr,UU.yqU rfrre \ rrv

.ll-.-.
^rrr-rrf

nrrl- I ino 1 rIrTaqeryqu rrrrv \ rrv

end;

ii,1ti+,+'ti{r,f ifl-+'.Si.3,,€i.

nf amnl
^\/aaq

col-l- i nc E2 i nnroaqo= | | l.nj-1 \

^F ^mhl ^^f t-'i na Q* innroaqa= tll.nf?\.VI glrrlrfvyggD :jgUUfllv 7O IIIU!gqDg I lv!!v4t,

A

create table empl
(

amn nn intaaorrII9vVvl ,

emp-name text,
cr'larrr f lnrl-
vsls! J

-Amm I niadaY

m^Y nn i nfanarIravvYv!,

do-i nn inl- ocor raFaranrae Aont- f donl- nn) nn rlal^f ^ ^-^^-.!^uulJu rrv arrLeyu! lYlglUllUYD UYIJU --. *-IYUY Lq>UqUY

);
create table deptl

Aant- nninr-anarueP e arv rrl ueYv! ,

rlanF nama l-avl-
VvvvlrgrllvvvZ\u'

locaiion text

i. Write a script to transfer all employees of dept. "C" of location '6CB" earning the
commission of 50o/o of their salary to dept "8". Also print the total number of employees

of dept. 'oC" transferred to dept "B".

PL/SQL Block
decl-ar e

cursor c1 is sefect dept_no from deptl where dept_name='B';
cursor c2 rs select emp_no,salary,dept_name, location,comm from

6mn1 rlonl- l r^rhaya danl- T danl- na=amnl rlont nn.vr'r},f , uv}/ur svyvf ! uvyu_rrv v",v I .

n nT 9rnr^rtrrno '

r r)*r antltrna'

cnt number;
begin

cnf '= O.

open c2;
loop
fetch c2 rnto r.;
exit when c2Enotfound;
open c1;
loop
fetch c1 into c;
exit when c1?notfound;

if (r.location ='CBr and r,dept_name='Cr) then
if (r.comm >= (r, salary/2)) then

update empl set dept_no = c.dept_no
where emp1,emp_no = r.emp_no;
cnt ; =cnt+1;

end if;
end if;

end loop;
n lnca n'1 .

end loop;
close c2;
dbms output.put line('Total no of emp of dept C transferred t.o dept CB

are='llcnt);
end;

ii. Write a script for the following: give the names of all those locations, which has total of
at least 5 depts. in it. Out of which at least 3 depts are spending approximate Rs. 50000/-
as salary of the employee.

PL/SQL Block
declare

cursor c1 is select l-ocation from empl,deptl
where deptl.dept_no=empl.dept_no group by location
having count (deptl- . dept_no) > =5 ;

cursor c2(foc varchar2) is select location from emp1,dept1,
where deptf. l-ocation=loc and
deptl.dept no=empl.dept no group by location

having count (dept1. dept_no) >= 3 and
sum(salarv) >= 50000;

c c]-Srowtype;
d a?9znr^rtrrna 'Uf PV ,

begin
open c1;
loop
fetch c1 into c;
exit when c1?notfound;

open c2(c.location) ;

loop
fetch c2 into d;
exit when c28notfound;
dbms_output.put_line('Location =' I ld

end loop;
close c2;

end loop;
close c1;

and.

location) ;

5.

create table company
I

n nn i nfadar

u rldlile Lc^ L ,

c-aaar text,
c cil-rr l_av|-

c share inteqer
);

r-Ll ^ ^^-creaLe traDIe person
(

n nn i nl-6d6zy_rrv rrr vvY vr ,

h nam6 l-avl-y llurrlv vvJ: v ,

n rdrlr t-avl-Y svu!

h
^i

f \r f 6vl-

n nhnno nn i nl-oaarrrruvYv!

);
-raai6 frhl o nnmn nar

(

c_no integer references
p_no integer references
no_of_shares integer

);

company (c_no)
person (p_no)

on delete cascade,
on delete cascade,

i. Write a trigger, which gets activated when company tuple is updated.It should delete all

the related tuples when share value of company becomes < Rs.10/-.

PL/SQL Block

create or rePlace trigger t-comp

after insert or uPdate on company

for each row

declare
c company.c_nottYPe;
v company. c_share?type ;

begin
select c-no,c-share into c,v ftom company

where c_share < 10;

delete from comPanY where c-no=c;

delete from comP-Per where c-no=c;

end;'

ii. Write a procedure/function, which will take company name as parameter and will find

names of persons who are shareholders of the company'

PL/SQL Block

create or replace procedure get_rec(cname in varchar2)

AS

CurSor c1 is Select Company. C_nO, c-name, person'p-no, p-name/ c-share

f rom comPany, Person / comp-Per

where comp-per . p-no=person. p-no

and comp_Per . c-no=company. c-no;
c cl8rowtype;

begin
^h6n ^-l

.

Iooc
fetch c1 into c;
exit when cl?notfound;
if(c.c_name = cname) then

dbms_output.put-Iine ('CoMPANY =' | | c'c-name) ;

dbms output.put-line('SHARE HOLDEF- = 'l lc'p-name);
end if;

ah.l I
^^h.vrlu 4vvv,

close c1;
end;

6.

create table dept
(

rl nn i nl. oaav

d_name text
);
create tab]e employee
I

a nn inl-ad67v_.lv +.^vvJv!,

e_name text,
basic_salary float,
d_no integer references dept (d-no) on delete cascad.e

);

i. write a script to calculate the salary of each employee as follows
HRA- Rs 2000 if basic_sal (= Rs g000, Rs 2500 otherwise.
DA- 35% of basic_sal
CA -Rs 500 if basic_sal < Rs 6000
Rs 800 if basic_sal > Rs 6000 and <=Rs 9000
Rs 1200 otherwise
PF -llyo of basic_sal
PT- Rs 200 if basic_sal <= Rs. g000

Rs 250 otherwise
Net salary is calculated as basic_sar* HRA* DA+ cA- pf- pr

PL/SQL Block
declare

cursor c1 is select 'r from emp;
hra number;
da number (20 ,4,) ;
pf number (20,4, ,
ca number;
pt number;
total_sal number;
c cltrowtype;

begin
open c1;
loop

fetch c1 into c;

exit when cltnotfound;
total_sal=0;
if(c.salarY <= 8000) then

hra: =2000;
Pt I =200;

e1 se
hra::2500,'
pt t=250;

end if;
if(c.salarY < 6000) then

-2 ' =cnn.
end if;
if (c.salarY > 6000)then

if(c.salarY <= 9000) then
ca:= 800;

else
. :1'= I2oo;

and r t'

end if;
pf := 0.11 * c.salarY;
da := 0.35 * c.salarY;

tota]_sal-:=c.sa1ary + hra + da + ca - pf - Pt;
'dbms_output.put-1ine ('EMPLOYEE :' | | c.e-name) ;

dbms_output.put-line(' HRA=' I lhra) ;

dbms_output.put_line('DA = t I lda) ;

dbms output.put line('CA = ' I lca) ;

dbms-output.put line('PF = '; lPf);
dbms_output.put_line('PT =' I lpt) ;

dbms-output . put-line ('ToTAL SALARY IS ' | | total saf) ;

end loop;
n1nca a1 .

end;

ii. Write a script using parameterized cursor to print department wise list of employees'

pass department number as a parameter to a cursor.

PL/SQL Block
declare

cursor cl- is sefect d-no from dept;
cursor c2(dno number) is select d_name,e_name from emp,dept

where dept.d-no=emp.d-no and emp.d-no = dno;
gfoup bY d-name, e-name;

c c1?rowtype;
d c2Erowtype;

begin
open c1;
loop

f etch c1 int,o c;
exit when clSnotfound;
open c2 (c.d no) ;

loop
fetch c2 j-nto d;
exit when not. found;
dbms_output.put_Iine (d. d_name I l " I

end loop;
close c2;
end loop;

cl-ose c1;

ld a nrma\
ts.v_arq.rrv/

7. Accept the deptname and print the no of employees working in that department.

Declare
v_deptname emp . deptname?type ;

v_count number;
Begin

v_deptname : = &v_deptname ;

select count(*) into v count
from emp

where deptname=v_deptname ;
dbms_output.put_line('No. of employees working in' | | v deptname I I

'are' I lv_count) ;

8. Accept the deptname and print the department no and location of that department.

Declare
v_deptname dept. deptnamettype i
v_deptno dept, deptno8type ;

v_deptloc dept, deptlocStype ;

Begin
v_deptname : =&v_deptname ;

saloc|- rlnn rla-*.,v, ucptloc into v_deptno, v_deptloc
from dept

where dePtname =v-deptname;

dbms-output.put-line('Department no is'l lv-deptno | | 'and location
i s' I lv denf.loc) ;

E;NG;

g. Accept empno and Print the name of employee with his salary.

Decl-are
v_empno emp. empnottYPe ;

v-empname emp' empnamettype ;

v-empsal emp. empsalStYPe;

Begin
v_empno : =&v_empno;

select empname, empsal into v-empname, v-empsal

from emp

where empno=v_empno;

dbms_output.put_line('Name of employee' I lv-empname'and salary is' I

lv_empsal);
k nd t

10. Print the name of employee and salarT, having minimum salary.

Declare
v name emp.empnameBtYPe;
., saf emp.empsalStYPe;

Begin
Select empname,empsal into v-name,v-sal
from emp

where "a1=(select
min(sal) from emp);

dbms output.put_line(v_name | | 'is having min. salary =' I lv-sa]);

11. Accept employee number and print date of joined'
Decfare

v eno emp.enottype;
v-date-ot-j oined date ;

Begin
v_eno: =&v_eno;

"6I".t
daie-of-j oined into v-date-of-joined

from emp
where eno=v_eno;
dbms output.put-line('Date of joined is I

End;
lv_date_of joined);

12. Accept salary and print number of employees having salary greater than or equal to
accepted salary.

Declare
rr qa l omn q:] 95 E.ype ;
v_cnt number;

Begin
v_sa1 : =&v_sal;
select count(*) into v cnt
from emp

where sal)=v_sal;
dbms_output.put_line('No of employees having salary greater than or
eguql to' | | v_sal I I'are' | | v cnt);

Eno,;

13. List all the employees having salary less than 3000 Rs.
Declare

1/ pnnma omn anama*l-rrna.vrrry r vrrsrrrv e vt !/v,
v_esal emp, esalttype;

Begin
Sel-ect ename into v ename
from emp

where esal(3000;
dhmq nr rinrrj- nrri- I i na 1 ! Tha arse.vqv f +11! \

.r.: ; rv_enamE);
ployees having salary l-ess than Rs'3000

tsno;

14. Program to find smallest number of two numbers.
Declare

N1- number;
I\T? nrrml.rov '

Begrn
N1 : =&n1;
N2 t=&n2;
Tf /NT1 aNl') t-han

Tlhmc Arrfnrrt-*- .puc
El se

T)hmq nrr1-nrrl- nrrl-

E.-; ; r.

line ('N1 is smallest') ;

line ('N2 is smallest');

15. Check whether the salary of Gaurav is 35000 or not
Declare

flqa l omn cr'l *t -ype;
Begin

Sel-ect sal into Gsal

I'rnm amnr ! vr.r v4rry

hlhor e Fmnn^me= t GaUf aV' ;
Tf 1llqa! >?qnOO) thcnI! \eeqr . JJvvv t

nl-rno nrrfnrrf nrri f inalrQalrrrurjilrs uuLuuL,y*, ------/
-E;.1SE

'Tthmc nrltnrrl- nrr'|. Iinp{|SaIarr!!r!,v v e vts ***-- _/

khd 1i t

Gaurav is 35000 ');

caurav is not 35000

of

of

16. Program for minimum of three numbers.
Declare

a number;
b number;
c number;

Begin
Dbms output.put line ('Enter
t'= ft;
Dbms output.put line ('Enter
b : =Ab;
Dbms_output.put line (' Enler
C : =&c;
rf (a<b) and (a<c) then

nl-rma nrrf nrrf nrrl- I i na I r: i euurltD_uuLI/uL r}Jqu_rrlrs \ u ro

Elseif (U<al and (b<c) then
Dl.rmc nrrfnlll- nrrl- linolth iquvttte vsuvqu.ysu_f rrrv \ ! ru

E;I SE
r'\l.rmc nrrl.nlrl- nrll- I ina/rc iqvvrtLo vq!Psv.yqv r!lrv \ v +v

nnd if;
.E;no;

value of

val-ue of

value of

minimum') ;

minimum') ;

minimum') ;

17. Print the numbers between I to 20.

Declare
n number: =0;

Begin
Loop

n=n+ 1 .

dl.rm< nrr'|- nrrl I jng (n) ;,y* _

if (n<20) then
exi L;

end if;
end loop;

!;nCI;

18. Print all the even numbers I to 15

Decl-are
i number I =0;

Begin
While i<=15 loop

'i = i +1 .

if (i_82==0)
dbms ouput.put line('The even nos

knd 1t r

End loop;
End;

are:'| | i);

19. Program to find sum of 1" 10 numbers.

Decl-are
nttm nr rm].rat | =1 ,

qrrm nrrml.ror ' =fl '

Begin
For num in 1,..10 loop

sum=sum+num;
dbms_output.put_line('The sum of 1st 10 nos.

End loop;
End;

is': | | surn);

20. Print the sum of odd numbers between I to 25.

Declare
nrrm nrrmhor ' =1 '
qttm nrrmlraz. =o '

Begln
For num in 1 ..,, 25 loop

If (num?2 | =0)
Sum=sum+num;

ENC1 1I;
Dbms_output.put_line ('The sum of odd numbers between 1_ to 25

suml ;

End loop;

ll

21. Accept a no and check it is even or odd.
Decl-are

n number;
Begin

Dbms-ouput. put-line ('Enter the number : ') ;

n: =&n;
if(n82==0) then

dbms-output' Put-line (' Number

else
d.bms outPut . Put-Iine ('Number

end if;
end;

is even');

is odd') ;

22. Accept number and print its square and cube'

DeCIaIE
num number;

Begin
Dbms_ouPut. Pui-_
nLm: =#

Dbms_ouPut . Put_
Dbms_ouput . Put_

line ('Enter a

line ('square
Iine ('Cube of

number: ') ;

of a number:'I
a number:'| |

lnrrm*nrrm\ .
I rrsrLr rlqrrr/ ,

num*num*num) ;

23. Accept a no and find its factorial.
Declare

num number;
f number: =1;

Begin
Dbms-ouput.put-line ('Enter a number:') ;

num: =#
while n)0 IooP
F. =f rknrrm.

num- -;
end loop;
dbms-output. put-line ('Factorial of number is : ' | | f) ;

anrl'

Decfare
str varchar (30) ;

ch varchar (1) ;

len number;
Begin

sLr: ='&str' ;

I en: =l enoth (str) ;f vr^Jv-r \''

While 1en)0 loop
ch: =substr (str , I , I) ;
Dbms_ouput.put. line ('The reverse string is: . | | ch) ;
len=l-en - 1;
End l-oop;

End;

25. Accept employee no and check whether it is present in emp table or not.
Decl-are

v_no emp. enottype,.
v_eno emp.enottype;

Begin
v_eno : =&v_eno;
Seleet eno i-nto v eno

From emp
Where eno=v_eno;
ff v_no=v_ eno then

Dbms_ouput.put_line ('Employee is present.) ;End if;
When data not found then
Dbms_output.put.l_ine('Employee is not present.) ;

26. Accept employee name and check whether commission is null o. not. ii;;m-i;J;i;
num raise an exception otherwise display commission.

T-)anl ara

v_comm emp.emp*type;
v_ename emp , enamegtype,,
chk_comm exception;

Begin
V_ename : =&v_ename,.
Sefect comm inco v comm
From emp
Where ename=v_ename;

If v_comm is Nul_1 then
Raise chk_comm;

$tse
Dbms_ouput.put line(

End if;
Exception;
When data_not_found then
Dbms_ouput . put_line (' Ename
When chk_comm Lhen
Dbms_ouput.put]ine ('Ename

v_conm) ;

do not present. ') ;

is nul] ') ;

27. Aceept employee num
Declare

and prints its

V no emP.enottype;
v-rrt*" emp ' enamettYPe;
V_desig emP . edesgttype ;

V_sal emp.esaIStYPe;
Begin

Select ename,edesg,esal- into v-name,v-desig,v-sa1
From emp;

Where eno=v_no;
If sqltfound then

Dbms_ouput.put_line('Name:' I lv_name | |'Designation:' | |

| 'SalarY:'l l v-sal-);
Exception;
When data_not-found then
Dbms-output. put-line ('Eno do not present ' ') ;

End;

v desig I

28. Accept a salary and I

than accepted salarY.
t name, salary designation employees having salary less

Declare
Cursor csr (c_sal emp. salStYPe)
Where sal(c_sal;
Emp rec csrttYPe;
v-".f emp. saftstype;

Begin
V_sal =&v_sal;
Dbms-output . Put-I ine ('Name
For emp_rec in csr (v-sal)

Loop

is select * from emP

Salary Designation') ;

| | ''l lemp-rec.sa1 I | '\ IDbms-ouput ' put-line (emp-rec . name
lamn rog.desig);
I vrrrY_+ v

End loop;

29. Print the details of employees who belongs to department no 5.

Declare
Cursor csr is select empname,empsal,empdesg,dno
From emp

Where dno=5;
V_n emp.empname?type;
V_s emp.empsal*type;
V_des emp. emPdesgttype
V dno emp.dnoBtYPe;

Begin
nnah dc7 '

Dbms_ouput. put_line ('Name designation salary departmentNo') ;
Tnnn'uvvy t

Fetch csr into v_n,v_s,v_
Exit when csrtnot found;
T)hmq nrrnrrf nrrl- Iinolrr nl I

End loop;
End;

dno;

'\ | lv_des | | r\l I v_s | | ,\ | lv dno);

30. Print name and salary of employee having designation as clerk and assistant.

Decl-are
Cursor c is select empname,empsal
From emp
Where empdesg= 'clerk' and
V_n emp.empnamettype;
V_s emp.empsal*type;

Begin
Open c;

emPdesg= 'assistant';

Dbms_output . put_line ttName salary') ;
Loop
Fetch c inLo v_n,v_s;
Exit when ct not found;
Dbms_ouput.put_line(v_n | | | \ ; lv_s) ;
End loop;

End;

31. To Create/modify a trigger
4-rdal-

^
ar ranl =nF f .r' i octer t1i ccal 94]v! r:J:Je

Before insert on emD

For each row
Begin

1f acc.sal-(=0 then
Dbms_output.put_line ('Salary must be non-negative
End if;

32. Passing eno as a parameter to procedure and modifying salary of that employee.

Create or replace procedure emp_proc
(no in number) Is
V_empsal number;

Begin
Select sal into v empsal-

l'Tnm amn
- ! vrrr vrrrF

Where eno=no;
rr -- ^--^^r > 2000 thenf ! v_grrljDq r

ITnrlal-a am-o-*-- -^"P
Set sal=v_empsaL*1.75
Where eno=no;

E-LSE
ITndr.|-a am-Y**-- -...p
Set sal-=7 000
Where eno=no;

knd 1t.

Ervaanl- i nn!,\evy e+vrr

When No_Data_Found then
Dbms_output . put_line ('Eno do not present') ;

End proc;

33. Designation to the calling program.

Create or replace procedure proci-
(p_no IN number,p_desg OUT emp.desgttype)

V_desg emp.desg*type
Begin

Select desg into v desg
From emD

Where eno=p_no;
P_desg: =v_desgf;

l"v.anl- i ^nurlvvye+v4^

When No_data_found then
P-desg= rNo';

End procl;
Decfare

F_eno number;
F_desg emp.desgttype;

Begin
Procl (af_eno, f_desg) ;
aE € A^^-- lf,t: \II I qesg= 'N() ;

Dbms output.put-1ine('Eno do not
EIse

Dbms_ouput . put_l ine ('Des ignation

End,'

exists);

of employee is:'I lf_desg);

ijtlii:1t+;iiPiui'i t

34- Passing employee name as an argument to function and function will return its
designation.

Create or replace function funcl (f name In Character)
Return character
T-

\Z .l^^^ ^'.^ l^^-o!-.-^v_qesg emp . oesg8type,'
Begin

Select desg into v_desg
From emp
Where ename=f_name;
If sql?found Lhen
Return (v_desg) ;
E1 SE

Return null_;

End funcl;

35. Pass department number to procedure and print maximum salary of employee working
in that department. rf department number does not exist print message.

Create or replace procedure procl (p dno in number)

Ma x sa I omn amnqa I * l-rrna .I9uJyv,

Begin
Select max(empsal) into max sal
From emp
Where dno=p_dno;
ff (max_sa1 >0) then
Dbms_output. put line ('Maximum
EI se
Dbms_output.put line ('Dno does
End if;

End procl;
Calling program
Declare

V_dno emp.dnottype;
Begin

V_dno: =&v_dnottype;
Procl (v_dno) ;

End;

36. Pass department number to a procedure. Procedure will number of employees working
in that dept using In Out variable.

salarrz I lmav c:l). | | rrruZr vs+ /

nnl- avi cfc'\ .
ve t t

Create or replace procedure proc2
(pr num in out number)

AD

V_num number;
Begin

Select count(*)into v num
From emp

Where dno:=pr_num;
Pr_num: =v_num;

E'vcanl- i nn
!z:vvy v+vr^

When No_data_found then
Pr_num: =0 ;

E'nA nrna9 '!r]s P! vva t

Calling program
Decl-ar e

P_no number;
Begin

P_no : =&p_no;
Proc2 (p_no) ;

Tf{n nn=ol thqpr! \v lrv v/

obis output.put line ('Passed dno do not exist ' ') ;
'lnen

Dbms_output.put_line ('No, of employees=
k'nd Ti.

End;

I lp_no);

37. Create a procedure, which display employee details and department name of 1" 5 lowest

paid employees.

Create or replace procedure proc3 as
Cursor c is sel-ect empname,empsal, empdesg,dname
l'r nm amn ri an Ifrvrilvr.ryr\^vvv

Where emp. dno=dept. dno
order by empsal asc;
Emp rec c8rowtype;

Begin
Dbms output.put tine('Name Designation Salary Department') ;

f'or emp_Iec].n c
Loop

ff c8rowcount(=5 then
Dbms_output.put_line (emp_rec.empname I I " | | emp_rec_empdcs:<1 I I

; | | emp-reZ.empsal I l' \ | lemp-rec.dname) ;

End loop;
End proc3;

38. Pass designation to a procedure and print names and salary of employee whose salary is

more than average salary of accepted designation.

Create or replace procedure proc4 (pr desg in varchar)
AS

Cursor c is sefect empname,empsal from emp
Whcro amnqel(=Ieola.l- a\rdlamn<al) frnm omn\ \vvrvvu uvY / rrvrr. errLy

\arhFrF daqc=nr doqn\.veJt I

amn YA- a*rnr.rf- " 'ype;
begin

dbms output . put line ('Name Salary') ;
f^- *^ ran irvr,(P !-- ,.I C;

loop
Al-.mc n"rntlt ntri I i na lomn ron amnnamo | |ulllLo_uuuvuL,yuu f rlrE \stl}/ !cu,srlrlrrlqrLLg l I

end l-oop;
onrl nrnc4 .

l amn ron omnqa l) .

39. Pass a number to a function and check whether it is divisible by 3 or not.

Create or replace function div(f no number in number)
Return nuniber
AS

.beq1n
rf (*oa(f-no, 3) =0) then

Return 1;
E.LSe

Return 0;
End if;

End div;
Calling program
Declare

Num number;
Rev number;

Begin
Num: =#
Rev: =div (num) ;

If (rev=r) then
T)hmq arr1-nrrf hl'fuvrrLr vuuIJuu r IJuu

E;ISE
T-\l.rmc nrr1-nrrl- hrrl-lvrrLo_vsuPuu.guu

End if;
l,lnd;

_line('civen no is divisible by 3');

_line('civen no is not divisible by 3');

40. Pass two strings to a function and prinf which string is smallest.

Create or replace functj-on str
(s1 in varchar, s2 in varchar)
Return varchar;
AS

Lenl:1 ength (s r) ;
Len2=length(s2) ;

If (1en1>1en2)
'1nen

Return r2nd string is smallest';
Else if (fenl<1en2)

Return tlst sgling is smallest";
E,L SE

Return 'Both are egual';
E;no lf ;

E;Nd .I I ,;

End str;

41. Pass a character to a function and

with the passed character.

create or replace function no of
Return number;
As

V_cnt number;
Select count(*) into v cnt
From emp

Where instr (empname, f ch) =1;
Return v_cnt;

FnA nn nf amn.v ! vrLrv ,

Calling program
Declare

V ch varchar (20) ;
n nulnDer;

Roai n

V_ch: =&v_ch;
n:=no of emp(v ch) ;
if (n>o) Etren

Dbms output.put line('No of employees having name starting with I

lv_cfr | | 'are:-l lv_cnt);
-Ei1Se

Dbms_output.put_tine('No one emp having name starting with'I lv_ch);
knd r i.

print numbers of employees having name starting

emp(f_ch in varchar2)

42. ' Write a package, which works as a arithmetic calculator.

Create or replace package calci

Procedure prc(p_num1 number,p_num2 in number, p_oper in varchar);
End calci i
Creat.e or replace package body calci
AS

Drnaadrrva nra!!vueuu!v yru (p_nuft1.p_num2,p_oper in varchar) as
answer number;

begin
if (p_oper= t+') then

answer : =p_numl- + p_num2;
elseif (P-oPer=' - \) then

answer r =p_num1 - p_num2 ;
elseif (P opef= ' *') then

an"r.i =p_num1 * p_num2;
elseif (p_oper= ' /') then

answer: =p_num1 / p_num2,.
Ahd 1f'

dbms_output,put_tine ('Answs1=' I lanswer) ;
avaanl- i nnv.\vvyervrl

when Zero_Divide then
dbms_output.put_Iine('Divide by zero error bcoz- 2nd number is 0.);

ond nzn,v.rv y! v ,

end calci;

43. Write a package' which consist of I procedure and 1 function; Pass a number to
procedure and print factorial of it Pass name to function and print details of that
employee.

Create or replace package pack

Prnaodrrza nznl /n h"* i - *,,-L^- \ -v plvr \p_num in number) ;
Function func (f_name in varchar)
Ret.urn varchar;
End pack;
CreaLe or replace package body pack
AS

Procedure prcl (p-num number) as
f number : -1;

n numberi
begin

€nr n in 1

loop
f'=f*n.

end loop;
dbms_output.

and nznT 'vrrs y!vr t

function func
return varchar
AS

v_name emp. enamettype;
v_desg emp. edesgttype;
,, --l 1*j-rrna.v >dI Urllfj. sDal o vJ pe ,,-
setect ename,edesg,esaf into v-name,v-d.esg,
where ename=f_name;
16l- rrrn 1r nama rr riaqc rr qa l .

, v uvsJ, v su{

anfl rlrna.
onrl na nk '

Callingprogram
Declare

num number;
name varchar (20) ;

begin
nltm. =tnttm '

pack.prcl (num) ;
name: =&name;
dbms_output. put_line (' Name Designation

end;

nrrl- linaltE'a-t-^rial=' | | f\vsu rr.re \ r I I L, t

(f name in varchar)

ca l frnm omnvrrr vrrry

Qrl arrr' | | frrnn /--*^\JArq!y | | !urru \llalttY/);

44. A Function for the list of the actor name and
than 5lakhs.

decl-are
cursor c1 is sel-ect mname,aname

from movj-e, actor,mov_act where
mov_act, mno=movie, mno
and mov_act . ano=actor . ano
and rate>500000;

c cltrowtype;
begin

dbms_output. put_1ine (' MovieName I I'
open c1 i

movie name in which actor's rate is greater

'l lActorName),

fetch c1 into c;
exit when clSnotfound;

dbms_output.put_line (c.mname | |

end loop;
^l^aa ^1

.

anrl .

t I lc an:ma'l .

45- Define a trigger before insert or update of each row of movie, that movies released after
2004be entered into movie table.

^raara nr ranl=^e triOOer t mn\/ 2OO4v u! aYYsr L_rllvv_

before insert or update on movie
for each row
begin

if(:new.relyear < ZOO4) then
raise_appl-ication_error(-20001,, Release YEAR SHOULD BE) 2004,);

end if;
and.

46- \ilrite a script to list the names of all employees who are female and earning maximum
salary in their department.

declare
cursor ci_ is sel_ect dept_no,dept_name from dept;
cursor c2 (dno number) is select emp_name from emp,dept

where emp.salary in (select max(sal_ary) ,emp.emp name
ftom emp,dept, where emp.dept_no=dno
and dept . dept_no=emp. d.ept no and sex= 'Fr
group by dept..dept no) ;

c clSrowtype;
d c2trowtype;

begin
open c1;
loop
fetch c1 into c;
exit when cltnotfound;
open c2 (c. dept_no) ;
loop
fetch c2 into d,'
exit when c2tnotfound;

dbms_output.put_line (c. dept_name | | d. emp_name) ;end loop,.
close c2;
end loop;
cl-ose c1;

and.

47. Write a script to give raise in salary by Soh for all the employees earning less than 3000

and 9o/o for all employees earning more than or equal to 3000. Also print total numbers

of employees in each case.
declare

cursor c2 is sel-ect emp-no,salary from emp,dept
where dept. dept no=emp. dept-no;

c c2?rowtype;
cntl number;
cnt2 number;

begin
nnf 1 . =O.

cnt2: =0;
open c2;
loop
fetch c2 into c;
exit when c2Snotfound;
if(c.salary < 3000) then

update emp set salary = salary + salary * 0 ' 05
whpre emn-emp_no = c.emp_no;

^nt.1 ' =^nl-1+-l .
vrJ9f r,

end if;
if(c.sa1ary >= 3000) then

update emp set salary = salary + salary * 0 ' 09

where emp,emp_no = c'emp-no;
cnL2't =cnt2+L;

end if;
end l-oop;
cfose c2;

zrl-.ma a,,tsni1r nrrr- linp(,Nrr of empfoyees getting 58 increase= 'llcntl);uurLlD uuL}Juu . yuL_rrlrv \ rrv vr vrrrH+vJ

dbms ou-tput.put line('No of employees getting 98 increase= 'l lcnt2);
end;

48. Write a script to transfer atl employees of dept. "A" of location 66AR" earning the

commission of 50o/o of their salary to dept "8". Also print the total number of employees

of dept. "A" transferred to dept 66A8".

declare
cursor cl- is select dept-no from deptl where dept-name='A'i
cursor c2 is select emp_no,salary,dept_name, Iocation,comm from

emp1, deptl
wher e deptl- , dept-no=emp1 . dept-no;

c c1?rowtype;
r c2?rowtype;
cnt number;

begin
nnl- .= n'

open c2;
loop
fetch c2 into r;
exit when c2Snotfound;
open c1 i
Ioop
fetch c1 into c;
exit when clSnotfound;

if (r. Iocation ='AB I and r . dept_name=,A,) then
it (r . comm > = (r . salary /z)) then

update empl set dept_no = c. dept_no
where empl_,emp_no = r.emp_no;

cnt: =cnt+1,;
end if;

and 1t'

eno. toop;
close c1;
end loop;
close c2;

depL AB 3fl"="yi?Xl;ii.-ttne('roral no or emp or depr A Lransrerred ro

end;

at least 6 <l-epts in it. Out of which at least 6 depts are spending apprriximate Rs. 40000/-
as salary of the employee.

decl-are
cursor c1 is select location from empl,deptl_

where deptl.dept_no=emp1.dept_no group by location
having count (deptf . dept_no))=6;

cursor c2(Ioc varchar2) is select location from empl,deptt
where dept1. l_ocati_on=1oc and
deptl.dept_no=empl.dept_no group by location
having count (deptf . dept_no)) = and

sum(salary) >= 40000;
c c-l * r nr^rf rrna .

d c2Srowtype;
begin

open c1i
loop
felch c1 into c;
exit when clSnotfound;

open c2 (c. Location) ;

loop
fetch c2 into d;
exit when c2Snotfound;

dbms-output.put-line ('Location =' I ld' location) ;

end loop;
cl-ose c2 ;

anri I nnn 'vrrv + vvy ,

close cl-;
end;

50. W.it.
"

i.igger, which gets activated when company tuple is updated. It should delete all

the related tuples when share value of company becomes < Rs.15/-'

create or replace t.rigger t-comp
after insert or uPdate on company
for each row
decfare

c company.c_nottype;
\/ r.rrmr.lanv . r: shareBtype;v v vlrys.rJ

begin
select c-no,c-share into c,v from company
where c_share < 15;

delete from comPanY where c-no=ci
del-ete from comp-per where c-no=ci

51. Write a script' which gets update the book details of book

exception if the given book number is not present or if the

than 4000.
create or replace procedure update-book(bno in number,bname in
vcrrcahT2,bval in number)
as

c1 cursor for select * from book;
c clErowt,YPe;
flag number;

begin
flag = 0;
open c1;
Ioop

fetch c1 into c;
exit when not found;
if (c.b-no=bno and c.price<=4000) then

update book set b-name=bname,plice-bval
where b_no=bno;
llqv - r t

dbms-output . put-Iine ('VALUES UPDATED SUCCESSFULLY') ;

no. entered
price of the

by user. Raise
book is greater

m"F*rs'f{

end loop;
cl-ose c1t
if (flag = 0)

ond i F.

end;

then
dbms_outpuL.put_1ine ('BOOK NoT FoUND') ;

52. Write i script, which will take publisher name as
books.

parameter and will display details of

varchar2)
creaLe or replace procedure get book (pname in

flag number;
cursor cl- is select p_name,b_name from book,publ_isher,book*pub

where publisher . p_no=book_pub. p_no
and book. b_no=book_pub. b_no ;

c clSrowtype;
begin

flag = o;
Anan

^1
.vyvrl v f ,

loop
fetch c1 into c;
exit when c1?notfound;
if (c'n-"3il:.n:,iT:],,t:::

,ind,rDnaL - , ',*-.o,*._line('Book = ,llc.b name);
f I aa=l .

and i f.

end loop,'
c.l-ose c1;
if (flag = 0) rhen

dbms_output.put_line ('ERROR : : BOOK
end if;

anA.

_NOT_FOUND');

53. A trigger that will take care of the constraint that movie released after 1995 be entered
in the movie table.

create or replace trigger t mov 1995
before insert or update on movie
for each row
begin

if(:new.relyear < 1995) then
raise_appl-ication_error (-20ool-, ' yEAR sHouLD BE > 1995') ,.end if;

end;

54. Write a script for the following

List the names of pubtishers who have pubHshed at least 2 books whose prices are

greater than 200 respectively for a department named computer science.

decl-are
cursor c1 is select p-no from publisher;
cursor c2 (pno number) is select p-name,b-name, d-name'price

from book, Publisher, dept
where book.P-no = Publisher.P-no
and book. d-no=dePt . d-no
and book.P-no = Pno
having count (book. P-no)) =2 ;

c clSrowtype;
d c28rowtype;

begin
open c1;
loop

fetch c1 into c;
exit when cl8notfound;
open c2 (c.p no);
loop

fetch c2 into d;
exit when c2Snotfound;
j-f (d.price > 2OO and d.d-name='comp') then

dbms_output,put-Iine ('PUBLTSHER :' l ld.p-name) ;

dbms-output.put-fine ('BOOK'' I ld.b-name) ;

dbms_output.put-Iine('PRICE :' I ld.price) ;

end if;
end loop;
cfose c2;

end foop;
al nca c-l '

end;

55. Write a script for the following

List the names of doctors who visit every hospital located in the city where they do not
live.

declare
cursor c1 is select doc-no,doc-name,city

from doctor;
cursor c2(dcity varchar2) is select hosp-no

from hosp
where hosp_city != dcity;

cursor c3(dno number,hno number) is select doc-no,hosp-no
from doc hosP

where doc_no = dno
and hosp_no = hno;

c c1?rowtype;
d c2Erowtype;
e c3trowtype;

begin
open c1;
loop
fetch c1 into c;
exit when clSnotfound;

open c2 (c. city) ;
loop
fetch c2 into d;

exit when c2?notfound;
open c3 (c . doc_no, d. hosp_no) ;

loop
fetch c3 into e;

exit when c3Snotfound;
dbms_output.put_line(,DOCTOR =, I

end loop;
close c3;

end loop;
cfose c2;

end l-oop;
close cl_;

ond.

le.doc_name);

56. Write a script for the following:
Increase the fare of AC rooms bv 807o and NON AC rooms by 30%.

declare
cursor c1 is select * from room;
c clSrowtype;

begin
open c1;
loop

fetch c1 into c;
exit when clSnot.found;
if (c. r_type=rAC') then

update room set fare =

where r no = c.r no;
^t ^^

update room set fare =
. where r no = c.r no;

anrl 'i f .

c. fare * 1.8

c. fare * 1.30

end loop;
cl-ose c1;

dl-rms nrrfnrf . nrf I i ne (' FARES UPDATED SUCCESSFULLYqvrtru vseysu ! ysv_4+.-v \

anrl '

57. Program to find largest number between two numbers.

Declare
NII nr rmhar .

N2 nurnber;
Roai n

N1 : =&n1;
N2 t=&n2;
If (N1>N2) then

Dbms output. put
Ei-L Se

r\l-rmc nrrfnrrl- nrttuvrilu vq!y

ts'nd 1 I .

Largest') ;

T ---^^+'\ .LqrvsDu /,

Iine ('N1

line ('N2 1S

58. Consider the following Relational Database:

Doctor(d_no, d-name' d-city)
Hospital(h-no, h-name' h-citY)

Doc_Hosp(d_no, h_no)

Write a function which will count number of doctors visiting to 'Poona' hospital.

Soluilon
creat-e or reolace funcLion cdoctorOreturn number is
dno Doc_Hosp. d_nottype ;

begi n
select countl*) into dno
from Doctor, HospitaI, Doc_HosP
where Doctor . d no=Doc HosP. d no
and
IJ^qnit-eI h nn=T)n.' Hosn-h nolrv ey v vy r]._rrv

and Hospit.f. h name='Poona Hospital' ;

return dno;
exc ept i on
when_no_data_f ound then
raise-application-error (- 20000, ' Doctors does not exist') ;

end;

59. Consider the following Relational Database:

Solution
crea f.e rlr renl61 gg
sel-ect Book. b_no,
Book, Author , Book
wher e

Book . b_no = Book_Auth . b_no
Author . a_no=Book_Auth . ano
bno Book. b_nott,ype;
bname Book . b_namettype;
nnamp Rnnk nrrh nemo*i- rrno,, Pqv_rrsrrrs o uJ Irs,
bprice Book. pricettype;

begin
open c1

1o op
fetch c1 into bno,bname,pname,bprice;
exit when clEnotfound;
dbms_ouput.put_line(bnoll bname ll pname ll bprice);

end l-oop;
close c1;
and '

Book @*no, b_name, pub_name, price)
Author (a_no, a_name)

Book-Auth (b_nora_no)

Write a procedure to display details of all books written
by'Mr. Mohite'.

procedure dbooks O is cursor c1 is
b_name, pub_name, pr ice from
Auth

and
and a name='Mr. Mohite

60. Consider the following Relational Database:
Customer(c_no, c_name, c_city)
Loan0_norl-amt, no_ofJears, c_no)
Define a trigger that restricts updation of Loan Amount.

Solution
create or replace trigger tfoan
before update on Loan
for each row
begin
if (:new.I_amt () :old.]_amt) then
raise_application_error (- 202,'cannot update') ;
end i f;
ond '

61. Consider the following Relational Database:

Employee(e_no, e-name, city,dept-name)
Project(p_no, p_name, status)

Emp_Proj(e_no, p-no' no-of-days)
Write a cursor to display details of all projects having status 'Completed'.

Solution
decLare
cursor c1 1s
select p_no, p_name, status
from Proj ect, EmPloYee, EmP-Proj
where Employee. e-no=Emp-proj . e-no
and Proj ect . p_no=EmP_Proj . P-no
And status=' comPfeted' ;

prec Proj ecttrow tYPe;
begi n
open c1
loop
fetch c1 into Prec;

exit when c18not found;
dbms output. put-Iine (prec. p-no | | prec. p-name | |

prec. staEus) ;

end loop;
and.

62. Write a package which consists of one procedure and one

function. For this consider the following Relational
Database:

Customer (cust-no, cust-name' cust-city)
Account (acc-no, aec-type' balance, cust-no)

i. Pass account number as a parameter to a procedure
display account details.

ii. Pass customer number as a parameter to a function
return total number of accounts of given customer.

Solution
Create or replace Package Packl

procedure p1(ano in number);
f unction f l- (cno in number) ;

return number;
ond nanlel 'vrrs Puer\4 t

create or repface package body packl

and

and

ffis
n7n

^^Altr^
hl / 1 i - hrrhL^- \yrvusuurs va \d f I1 lrulllugI /

is
arec AccountBrow type;
begi n
select * into arec
from account
where acc_no=a;
dbms_output . put f ine (ar ec .

arec. balance
l l' 'l l arec.cust no);

number

acc_no ll ' 'llarec.acc_typell' tl

end p1;
function fl (cno in number) return number
i^

n number
begin
sel-ect count (*) into n
f,^-

^^^^,,-rnuevurrL, Customer
where Customer. cust_no=Account, cust no
and Account. cust no=cno;
return n;
end ft;
end packl;

Solution
DE CLARE

CURSOR c1 is
select D_no, D_name, Location
from Department, Employee
where Department.D_no=Employee.D no
and Ename= 'Mr . .Toshi' ;

Dno Depar tment . D_nottype;
Dname Depar tment . D_namet t,ype;
Loc Department, Locationttype;

BEGIN
dbms_output . put_1 ine (Depar tment NO | | ,

63. Consider the following relational database:
Department @_no, D_name, Locatbn)
Employee (Eno, Ename, Edesg, Esalary, D_no)
Write a cursor to disptay the department details of
employee "Mr. Joshi',

| | lDepartment Name I t'

I I T nn: f i nn \

OPEN C1;
if ClTISOPEN THEN

LOOP
FETCH c1 into Dno, Dname, Ioc;
EXIT WHEN C]-SNOTFOUND;
if C1?FOUND THEN
dbms_output.put-line (ono | | |

END TF;
END LOOP;
ELSE
dbms-output . put-1ine ('unable to open cur sor ') ;

END TF;
CLOSE c1;
END;

64. Consider the following relational database:
Item(Itemno, Itemname' QtY)
Supplier (Supplierno, Suppliername' Address' City' Phno)

I-S(Itemno, Supplierno, Rate, Discount)
Define a trigger before updation on discount field' if the
difference in the old discount and new discount entered is

message.

Solutlon
create or replace trigger ISDiscount
before insert or uPdate
on 1_S
for each row
beqin
if : old. Discount - new. Discount) 0 . 1-5 then
raise_application-error (-20002,'Discount is greater
endi f ;

end;

65. Consider the following relational database:

Game (Game_no, Game namq Team_size,

Name_of_coach)

Player @layer-no, Player-name, Player-city)

Game
-Player

(Game-no, PlaYer-no)

Wrlte a functlon whlch will take game name as a

psrameter snd return total number of players plsying thtt
game.

'llDnamell' ' ; lloc) ;

tnan J-56) ;

Solution
Create or replace function rtotalbooks (gname var char2) return
number is
Tofa I nl arrcr nl arror nn9l-rrnor,HaqJv! rrvouJye

u g v f 1r

="i".t count (Game-Ptayer. Player-no) into Total
f rOm Game - Pl aw^- n-n^ Dl -.'^-vurrre , L laJ s! , uatlLv_rf ay gl
wher e
--6^

^-'i^
n^-d--^ nl

--,^\Jdllre . (Jdtlle I].o=bd.]ile .H.IdveI . Liame no
and pl:rro7 Pl array nn =;--o o l aJar Dl rrrar h,r rqJ e! . r rqyeJ._IIO=(:dlllg_yI*r -- --_,.C
and Game_name=gname;
raf llrn 1'f a1- a l)

exception
when no_data_found then
raise_application error (-20000,'Game does not exist') ;
end,'

66. Consider the following relational database:

Publisher (P_no, P_name, P_addr);

Book @ no, B_name, Price, P_no);

Write a script, which will update the book details of book
number entered by user. Raise exception if the given book
number is not present or if the price of the book is greater
than 500.

Solution
decl-are
mbook_no Book. B_no?type ;
mbook_name Book.B_name Btype;
mprice Book. Price?type;
mnranr'i na awnonl- - 10n;
begin
select B_no into mbook_no
from Book
where
jJ no= &.b no ;
iF mfoot no is not null
then
mbook_name=' &B_name' ;
mnri na ' =',c, Dri na' .

if mprice)500 then
raise moreprice;
e1 se
rrndr l- a Rnnizsyss vv uvvr\

set B_name=mbook_name, Price=mprice
where B_no=mbook_no;
anA i €.

i!$jll!&i,f{tilll,1i,ij i
end if;
^.'^^^+.i ^-g^usp L a vrr

when no_data_found then
raise application error (-20000,
when iloreprice then
rai se annl i caf.i on error (-20001,syF44v\4 v+v

end;

'Book not found') ;

'Price > s00/-') ;

67. Write a package, which consists of one procedure and one

function; pass a number to procedure and print addition
of two numbers. Pass city name as a parameter to function
and display number of hospitals located in that city for
consider following relation:

Hospital (Hno, Hname, Hcity)

Solution
create or replace package Packl-
AS
procedure p1(a in number, b in number);
function f1 (fname varchar2)
return number,'
end packl;

create or repface package body packl
AS
procedure p1(a in number, b,in number)
AD

c number;
begin
c=a+b;
dbms output.put line('addition' I lc) ;
end pr;
function f1
(cname varchar2)
return number
d5

n number;
begin
select (count*) into n from hospital
where Hcity=cname;
return ni
end f1;
end packl;

68. Consider the following relational database:

Doctor(doct _no,doct_namerd_city)

Hospital(hosp_no,hosp_namerh_cify)

Doc-Hos(doct_norhosp_no)

write a script ' of cursor to print the rist showing the
hospital-wise list of doctors.

Solutlon
don l rra

cursor c1 is select * from hospital;
cursor c2 (hno varchar) is

sel-ect, d. doct name
from doctor d,Doc-Hos
where hno=Doc-Hos.hosp

begi n
for x in c1 loop

dbms_output . put line (

dbms_output . put I ine (

for y in c2 (x . hosp_no)

dbms_output . put_1 ine (
end loop;
end loop;
anri.

no and d.doct_no=Doc-Hos.doct no;

'l lx.hosp_name);

Consider the following relational database:
Customer(cust_norcust_namercust city)
Account(acc_noracc_typerbalance)

Cust_Acc(cus+:no, acc_n o)
Define a trigger before insert or update of each row of
account table for existing customer, if the customer is
having balance less than Rs.500 in his account then raise
an exception and display corresponding message.

Solutlon
create or replace trigger CAccount
Before insert or update
on Account
for each row
begin

if : new.balance <500 t,hen

Iil:"EIXP+ication-error (- 2oooo, 'Balance should be srearer
L

ond .i €.

end;

70. Consider the following relational database
Publisher(p_no,p_name,p_addr)

'Hospi-taI:'ll
'doctor : ') ;
loop
' 'l ly.doc_name);

69.

Book(b_norb_namerprice)

Pub-Book(p_no,b_no)
Write a function that will accept publisher name as

parameter and return number of books published by that
publisher.

Solution
r.rFarc or renl.ace

Total Book. b
begi n

select count (b
wher e

l-istof books (pubname varchar)

no I type ;

no) into totaf from Publisher,

return numberis

Book, Pub - Book

prrl^rlisher_n n^=prrh-Rnnk n nO andf earv I t P

Book. b-no=P;b - Book. b-no
and p name=pubname;
retur;(tota1);
ovaoni- i anvJ\vvv v+vrr

when no_data_found then
rai qp ennl ication error (-ZOO 00, 'publisher does notv syy+

exist');

and.

71. Consider the following relational database

Department(d_nord*namerlocation)

Employee(e_nore_namere-addrre-salary'd-no)

Write a procedure which will take department name as

parameter and will display details of employees working
in that department.

Solution
r-.r.Fef e or renl:ca nrncedrrre detai lsof emn(dname varchar)ulsq us !vvrevv y!vv

cursor c1 1s
select e_no, e .name, e_addr , e_salary
Fvnm Fmnl nrraa T-\on2rl- manl-!rLryrvJ vv, uvy4L

wher e
Department. d_no=Employee. d-no and d-name=dname;
Lrmhn^ Etmn l nrroa a hn *l- rrno.lrrt}Jrrv llrtlJr vJ q eJ yv ,

Empname Employee . e_namettYPe;
Empaddr Employee . e_addr ttYPe;
Empsal Employee . e_salarYt tYPe;

begi n
open c 1- ;

I oon

fetch c1 into Empno, Empname, Empaddr , Empsal_;
exit. when cltnotfound;
dbms_output. put_fine (Empno | | Empname | | Empaddr | | EmpsaI) ;

end l-oop;
close c l- ;

end;

72. Write a package, which consist of one procedure and one
function. Pass two numbers to procedure and print largest
number. Pass department number to function and print
location of that department for this consider following
relation: Department(d_nord_namerlocation)

Solution
create or replace. package packl-

procedure p1(n,m in number),'
function f1 (dno number) return varchar

ond naalrl .

creat.e or replace package body packl

nrn^adrrra ^1vf
(n,m in number)

begi n
if (n>rn)

dbms_
else

dbms_
and i f .

and.

function ft-
(dno number)

return varchar

loc varchar;
begin
sel-ect location int.o 1oc

return l_oc;
onA F1,

end packl;

^rlfhrr+ hr'ts 1l-e(r n is larccq1- nrrmhor'lln\.vsuyuu.lJuu IIII_ \ | tLLt,

^irtsh1rF *,rF 'l j -.e (rm .i s l:raoql- nrrmhar. I I m,luu.I/uu f f Ilv \ lo rq!yg;_

from department where d no=dno;

73. Consider the following Relational Database:
Employee(eno., ename, city, deptname)

Project (pno, pname, stafus)

Emp-proj (eno,pno, no-of-days)

Write a cursor which will display project wise list of employee.

Solutlon
declare
cursor C1. is
select pno, pname, status
f rnm E'mn"l nrroa Drnionl- Fmn-nrnir!vrLL lrrryrvJ vv r r !vJ vvv, uLtty yLvJ

where Employee.eno = Emp-proj,eno
and Drni6-l- nnA = E'mn-nrn'i nno!vJevuryarv

r ar '(11 * r nr^rtrrno 'u!vrYvttsv,

begin
open C1;
foop
fetch
fetch C1 into rec;
exit when cltnot found;
dbms_output.put_line (rec.pno | | rec'pname | | rec.status)
end loop;
^t6c6

| | r

end;

Consider the following relational database:

Dept(deptno., deptname, location)

Emp (empno, empname, sal, comm' designation, deptno)

Write a procedure to increase salary of given employee by 5% and

salary.
Solution
tr^af 6 Ar ronl ace nrnaodttre9I 9q us ! vy+qev
p1 (name in varchar2) as
salary number; en number;

nm var char2;
begin
update Emp set sal=sa1+0.05*saI
where empname=name;
qolpr.f Fmnno cmnname.sal intou vaLLvrlv , vrLLylrgrrrv , v\4 5

6h nm qa larrr f rnm Fmn
, r4L4LJ !!varr !r.!y

where empname = name
dbms outpuL.put Iine(enl Inml lsalary);

74.

75. Consider the following relational database:
Movie (mno, mname, relyear)
Actor(ano, aname)
Mov-act(mnorano)

Define a trigger before insert or update of each row of
movies that movie released after 2010 be entered into
movie table.

76. Consider the foltowing Relationat Database:
Politician (trlno, pname, desig, partycode)
Party(partycode, partyname)
Write a function to return total number of politicians of a
given party.

77. Write a package which consists of one procedure and one
function.
Consider relation person.
Person(pno, pname, paddr, pcity,phno)

Procedure of a package will display details of given
person. Function of a package will count number of
person from Pune city.

Solutlon
creefF nr ranl:da Irinna- t- mnrrv er fY:js! u rrrvv
before insert or update on Movie
for each row
begin
if (: new. relyear <zOtO) then
raise-application_error (-2ooo1, 'Release year should be > 2010') ;
ond 1 t.

Solutlon
create or replace function
totalpoliticians (pname in varchar2)
return number is
total- number;
begin
select count (Politician. partycode)
into total from Politician, party
where partyname = pname and politician.partycode = party.partycode;
ro1.rrrn'/f ^j-r'l \

avcanl- i nnvJrvvy e+vrr

when no data found then
raise_aflplic5tion_error (-2OOOO;'party does not exist.) ;
end;

Solution
create or replace package Packt

nror:edrrre n1 (no in number);Pr vvvu\.r

function f1 O ;
return number;
end packl;

creaLe or replace package body packl
nrnnadrrrc nT /no in number)y! vvv\4sr

is
r6v Darcnn9znr^rfrr'---"-rP€i
begin
select,k into rec from Person
r^rh6ra nn^=nn.yrrv rrv t

dbms_output. put_line (rec. pno
rec.pcity | | rec.phno) ;
ond nl .

function f1- O return number
is

| | rec.pnamel lrec.paddrl I

cnt number;
begin
select count(*) into cnt
from Person where pcity = "Pune";
Y^!rar-

^hF '!gLq!II UITU,

end f1;
end packl-;

t. What is PLISQL? Give advantages of PL/SQL.

2. Give syntax of storedprocedue in PLISQL.

3. Define cursor. Enlist attributes of cursor.

4. What is difference between %o type andoh row type?

5. Write syntax of for loop in PLiSQL with example.

6. Write syntax and example of while loop in PUSQL.

7. Give proper syntax of trigger.

8. Which are different attributes of cursor?

9. Define PLISQL. What is use of PLISQL?

10. What is structure of PL/SQL block?
11. What is Trigger? What are the types of Trigger?

tod'2015- 2Ml

1Oct.2015- 2Ml

1Oct.15.14- 2Ml

lApr.l5.Oct.10 - 2Ml

lAor.2o15- 2Ml

1Od.2014- 2Ml

lOct.l 2.Aor.1 0.09 - 2Ml

tod.2012- 2Ml

lApr.2012- 2Ml

1Aor.2012- 2Ml

lApr.2i12- 2Ml

PU |luestions

lOct.2011 - 2Ml
IOct.2011 - 2Ml

lApr.2011 - 2Ml
IAar.2011- 2Ml

IOct.2010 - 2Ml
lOct.2MA - 2Ml

IApr.l0.Oct.09 - 2Ml

tOct.2015 - 4Ml

lOct.2015- 4Ml

IOct.2015 - 4Ml

IOct.2015 - 4Ml

t}ct.2015 - 4Ml 3.

IOct.2015- 4Ml

lOct.2015- 4Ml

lOct.2015 - 4Ml 6.

12. What is Cursor? List the Attributes of Cursor.
13. What is PLISQL? Give PVSQL block structure.
14. List modes of trigger and its syntax.
15. Give proper syntax of procedure in pLlSeL.
16. List the steps involved in defining the explicit cursor.
17. Give proper syntax for function in pLlSeL.
18. What is Cursor? Which are the various attributes of Cursor?

l. Write a package which consist of one procedure and one
frrnction. Pass a number as a paxameter to a procedwe and print
whether no. is *ve or -ve.
Pass students rollno as a parameter to a function and print
percentage of student.
For this consider the following relation:
Student (rollno, name, addr, total, per).

2. Consider the following relational database.publisher (pno,
pname, pci$
Book (bno, bname, price, pno)
Write a figger which will restrict insertion or updation on price,
price should not be less than zero.
Consider the following relational database.
Wholesaler (wno, wname, city)
Product (pno, pname, price)
Wp (wno, pno)
Write a cursor to display wholesalerwise product details.
Consider the following relational database:party (pcode, pname)
politician (pno, pname, pcity, pcode)
Consider the following relational database.
Student (sno, sname, city, class)
Subject (subno, subname)
Stud-sub (sno, subno)
Write a function which will take class as aparameter and will
return total number of students
Consider the following relational database:
party (pcode, pname)
politician (pno, pname, pci$,pcode)
Write a procedure to display details of all politician of the given
parly.
Write a note on exception handling in pLlSeL.
What is Trigger? Explain tlpes of trigger in detail.

4.

5.

7.

8.

ffi€.+#ffi.-giffi

9. Write a package which consist of one procedure and one

function, consider relation student. Student (Roll-no,

stud-name, class, stud-addr, percentage) procedure of a

package will display details of given student. Function of a
package will count total number of students having percentage

greater than 80 and class 'TYBCA'.
10. Consider the following relational database.

Book (bno, bname, pubname, Price, dno)

Department (dno, dname)

Write a procedure which will display total expenditure on

books by a given department.

I 1. Consider the following relational database.

Department (deptno, deptname, location)

Employee (empno, empname, salary, commission, designation,

deptno)

Write a trigger for an employee table that restricts insertion or
updation or deletion of data on 'Sunday'.

12. Consider the following relational database'

Politician (pno, pname, description, partycode)

Party (partycode, partyname)

Write a clusor to display partywise details of politicians.

13. Consider the following relational database.

Employee (empno, empname, city' deptname)

Project (Projno, proj name, status)

Emp-proj (empno, proj no, number-of-days)

Write a function which will return total number of employees

working on any project for more than 60 days.

14. What is cursor? Explain different attributes used in it.

15. What is trigger? Explain trigger with proper syntax and

example.

16. What is PL/SQL? Explain block of PLISQL.
I7. What is exception handling? Explain user defined exception

with example.
18. What is the difference between function and procedure, explain

it with example.
19. Explain different data types in PL/SQL.

IApr.2A15- 4Ml

tApr.2015 - 4Ml

IApr.2015 - 4Ml

lApr.2015 - 4Ml

lAor.2015 - 4Ml

lApr.'15.12- 4Ml

lAor.2015 - 4Ml

lApr.2015 - 4Ml

tOct.2014- 4Ml

tod.2014- 4Ml

lOct.14 Aor.12.10 - 4Ml

lOct.2014- 4M1 20.

]Oct.2014 - 4Ml 21.

1Oct.2014- 4Ml 22.

lOct.2014 - 4Ml 23.

lOct.2014- 4Ml 24.

Consider the following Relational Database:
Employee(eno., enarne, city, deptname)
Project (pno., pname, status)
Emp-proj (eno,pno, no -of-days)
Write a cursor which will display project wise list of employee.
Consider the following relational database:Dept(deptro., depfirame,
location)
Emp (empno, empname, sal, comm, designation, deptno)
Write a procedure to increase salary of given employee by 5% and
display updated salary
Consider the following relational database:
Movie (mno, mname, relyear)
Actor(ano, aname)
Mov-act(mno,ano)
Define a trigger before insert or update of each row of movies that
movie released after 2010 be entered into movie table.
Consider the following Relational Database:
Politician (pno, pname, desig, partycode)
Party(p artycode, p artyname)
Write a function to return total number of politicians of a given
party.
Write a package which consists of one procedure and one fi.rnction.
Consider relation person.
Person(pno, pname, paddr, pcity,phno)
Procedure of a package will display details of given person.
Function of a package will count number of person from pune city.
Explain following pre-defined exceptions.
no_data_found,zero_divide,too_manyrows, dup_val on_index.
What is Parameterized Cursor? Explain it with example.
Consider the following Relational Database:
Doctor(d_no, d_name, d_city)
Hospital(h_no, h_name, h_city)
Doc_Hosp(d no, h_no)
Write a function which will count number
'Poona' hospital.
Consider the following Relational Database:
Book (b_no, b_name, pub_name, price)
Author (a_no, a_name)
Book-Auth (b_no,a_no)
Write a procedure to display details of all
Mohite'.

of doctors visiting to

books written by 'Mr.

IOct.2012- 4Ml

lOct.12.Aor.11 - 4inl

toc'..2012- 4Ml

25.

26.
27.

lOct2012- 4Ml 28.

29. Write a package which consists of one procedure and one

function. For this consider the

following Relational Database :

Customer (cust_no, cust_name, cust_city)
Account (acc_no, acc type, balance, cust_no)

i. Pass account number as a purameter to a procedure and
display account details.

ii. Pass customer number as a parameter to a fi.rnction and

retum total number of accounts of given customer.

30. What is Cursor? Explain different Attributes used in it.

31. What is Exception Handling? Explain Predefined and User.
Defined Exception with example.

32. Consider the following relational database:

Department (D_no, D_name, Location)
Employee (Eno, Ename, Edesg, Esalary, D_no)

Write a cursor to display the department details of employee

"Mt. Joshi"

33. Consider the following relational database:

Item(Itemno, Itemname, Qly)
Supplier (Supplierno, Suppliername, Address, City, Phno)
T-S(Itemno, Supplierno, Rate, Discount)
Define a trigger before updation on discount field, if the
difference in the old discount and new discount entered is> l5o/o

raise an exception and display corresponding message.

34. Consider the following relational database:

Game (Game_no, Game name, Team_size, Name_o{-coach)
Player (Player_no, Player_name, Player_city)
Game _Player (Game_no, Player_no)
Write a function which will take game name as a parameter and
return total number of players playlng that game.

35. Consider the following relational database:

Publisher (P_no, P_name, P_addr);

Book (B_no, B_name, Price, P_no);

Write a script, which will update the book details of book number
entered by user. Raise exception if the given book number is not
present or if the price of the book is greater than 500.

lif.+$,ift,i.li$iffi

lOct.012- 4Ml

lOct.2012- 4Ml

1Oct.2012- 4Ml

lApr.2012- 4Ml

IAor.2012- 4Ml

IApr.2012- 4Ml

lApr.2012- 4Ml

IAor.2012- 4Ml

IOct.l 1.09.Apr.1 1 - 4Ml

lOct.11.09 - 4Ml

lOct.2011 - 4Ml

36. !rit9 a package, which consists of one procedure and one
function; pass a number to procedure and print addition of two
numbers. Pass city name as a parameter to function and display
number of hospitals located in that city for consider fouowing
relation:
Hospital (Hno, Hname, Hcity)
Explain advantages and disadvantages of pLiSeL.
Explain different control structures used in pUSeL with
proper example.
Consider the following relational database:
Doctor(doct no,doct_name,d_city)
Hosp ital(hosp_no,ho sp_name, h_city)
Doc-Hos(doct_no,hosp_no)
Writg a script of cursor to print the list showing the
hospital-wise list of doctors.
Consider the following relational database:
Customer(cust no,cust name,cust_cify)
Account(acc_no, acc_t5p e,balance)
Cust_Acc(cust no,acc_no)
Define a trigger before insert or update ofeach row ofaccount
table for existing customero if the customer is having balance
less than Rs.500 in his account then raise an exc{tion and
display corresponding message.
Consider the following relational database

Publ isher(p_no,p_name,p_addr)
B ook(b_no,b_name,pri ce)
Pub-Bookfu_no,b_no)
write a function that will accept publisher name as parameter
and rehrn number of books published by that publisher.
Consider the following relational database
Department(d no,d_name,location)
E_mployee (e_no, e_name, e_addr, e_salary, d_no)
Write a procedure which will take department name as
parameter and will display details of employees working in
that department.

lrite a package, which consist of one procedure and one
fi.rnction. Pass two numbers to procedrne and print largest
number. Pass department number to function ana print location

9f that department for this consider following relation:
Department(d nod name,location)

Jt.
38.

39.

lOct.2011- 4Ml 4A.

lOct.2011 - 4Ml 4L.

Ioct.2011 - 4Mt 42'

IOct.2011- 4Ml 43.

46.

Employee(e_no,e_name,e_addr,e_salary,d_no)
Write a procedure which will take department name as

parameter and will display details of employees working in
that department.

44. Write a package, which consist of one procedure and one
function. Pass two numbers to procedure and print largest
number. Pass department number to function and print location
of that department for this consider following relation:
Department(d no,d_name,location)

45. What is cursor? List the attributes of cursor with suitable
example.

Consider the following relational database

Publisher(Pub_no,Pub_name, Pub_city)

Book(B ook_no,book_name,bookgice)
Pub_Book(Pub_no,Book_no)

Write a firnction which will take publisher name as parameter
and will return total number of books published by given
publisher.

Consider the following relational database

Customer(cust_no, cust_name, cust_city)

Accoun(Account_no,Account_tlpe,balance,cust_no)

Write a procedure which will take account type as a parameter
and will display customer name having accounts of given type.

Consider the following relational database
Doctor (Doct_no,Doc_name,doc_city)

Hospital(Hosp_no,Hosp name,hosd_ciry)

Doc-Hosp(Doct_no,Hosp_no)

Write a script using cursor to print doctor wise list of hospitals
visited

Consider the following relational database

Dep artment(Dept_no,Dept_name)
Emp I oyee(EMp_no,Emp_name, dersi gnation,salary, dept_no)

Define a trigger that will take care of the constraint that
employee's salary should not be less than zero.

Write a package which consists of one procedure and one

firnction. Pass a number as parameter to a procedure and print
whether a number is positive or negative. Pass roll number

tocf,.2011 - 4Ml

lApr.2011 - 4Ml

lApr.2011- 4Ml

lApr.2011- 4Ml

tAor.2011- 4Ml

tApr.2011 - 4Ml

IApr.2011- 4Ml

47.

48.

49.

50.

1Oct.2010 - 4Ml

lOct.2010 - 4Ml

IOct.2010 - 4M1

lOct.2010 - 4Ml

IOct.2010 - 4tu11

IOct.2010 - 4Ml

IOct.2010 - 4Ml

lOct.2010 - 4Ml

lApr.2010 - 4Ml

of student as a parameter to function and return percentage of
that student for this consider following relation.
Student(Roll no,Stud_name,Stud_addr,Studjercentage)

51. What is cursor? Explain two types of cursors.
I

52. What is PL/SQL? Give PL/SQL block structure and explain its
details.

53. What is the package in PLISQL? Explain with example.

54. Consider the following relational database:

doctor(doct_no, doct_name,doct_city)

hospital(hosp_no,hosp_name,hosp_city)

do ct_ho sp(doct_no,hosp_no) ;

Write a script using cursor to print hospitalwise list of doctors.

55. Consider the following relational database:
department(dept no,dept_name)
empl oyee(emp_no, emp_name, des i gnati on,salary, dept_no)
Define a trigger that will take care of the constraint that
employee salary should not be less than zero.

56. Consider the following relational database

pub lisher(pub_no pub_name,pub_city)
book(book_no,book_name,price)
pub_b ook(pub_no,book_no)
Write a procedure which will take publisher name as parameter
and will display books published by that publisher.

57. Consider the following relational database
customer(cust_no, cust_name, cust_city)
account(acc_no, acc_t5pe,b alance, cust_no)
Write a function which will take acc_type as a parameter and
will return total number of accounts of given acc-type.

58. Write a package which consist of one procedure and one
function. Pass a number as a parameter to a procedure and
print whether a number is even or odd. Pass per_no of a person
as a parameter to a function and return ph_no of that person.
For this consider the following relation:

Person (per_no, per_name, per_addr, per_city, ph_no);

59. What is Trigger? Explain any two types of triggers.

0,
ut$ofl

(/afrerr B

TnnilSACTIOIU
MAilAGEIUIEIUT

1. Transaction Goncept

A transaction is a unit of program execution that accesses and possibly updates various data items.
A transaction results from the execution of a user program written in a high level data manipulation
language or programming language (fo, e.g. SQL, COBOL, C, PASCAL) and is delimited by
statements of the form begin transaction and end transaction. The transaction consists of all
operations executed between begin and end of the ffansaction.

For example.' A transaction includes read and write operations to access and update the database.

Read (X)

X=X+N
Write (X)

Read (Y)

Y=Y+N
Write (Y)

ff.

2. Transaction Properties

Transactions should have several properties. These are called the

ACID properties and they should be enforced by the concrurency

control and recovery methods of the DBMS.

Thefollowing are the ACID properties of transactions:

1. Atomicity: A transaction is treated as a unit of operation.

Either all the transdctions actions are completed or none of
them are. It is also known as 'a11-or-nothing property'. If the

transaction fails to complete for some reason, the recovery
manager must undo any effects of the transaction of the

database.

2. Consistency: The consistency of a hansaction is simply its
correctness. It implies that if the database was in a consistent

state before the start of a transaction then on termination of a
transaction the database will also be in a consistent state.

Each transaction, run by itself with no concurrent execution of other transactions, must
preserve the consistency ofdatabase. This property must hold for each transaction.

The user's who submits the transaction must ensure that when run to competition by itself
against a consistent database instance, the transaction will leave the database in a consistent

state.

For example, the fund transfers between bank accounts should not change the total amount of
money in the accounts. To transfer money from one account to another, a transaction must

debit one account, temporarily leaving the database inconsistent in a global sense, even though
the n6w account balance may satisfu any integrity consfraints with respect to the range of
acceptable account balances. The user's notion ofa consistent database is preserved when the

second account is credited wiih the transferred amount.

Isolation: It indicates that actions performed by a transaction will be isolated or hidden from
outside the transaction until the transaction terminates. It sives the transaction a measure of
relative independence.

Durability: It ensures that once a transaction commits, its results are pelmanent and cannot be

erased from the database. These changes must not be lost because ofany failure.

3.

3. Transaction States

A transaction is an atomic unit of work that is either completed in its entirety or not done at all. For
recovery purposes, the system needs to keep track of when the transaction starts, terminates, and

commits or aborts. A transaction that completes the execution successfully is called as a committed
transaction. The committed transaction should always take the database to the new consistent state.

The changes made by the committed transaction should be permanently stored in the database even

if there is any system failure.

A database transaction is a logical unit of database operations
which are executed as a whole to process user requests for retrieving
data or updating the database.

There arefive states of transaction:

1. BEGIN: The transaction on the database begins by the

execution of the first_statement of the transaction that is it
becomes active.

2. ACTIVE: ln this state, the transaction is modifying the

database state. ln this state, the transaction is performing read

or write operations on database state. At the end of this state

the transaction will enter into three states, i.e., start, commit,
abort or error.

3. COMMIT: In the start-commit state, the transaction instructs

the DBMS to reflect the change into the database. Once these

changes are done in database the fransaction is said to be in a
commit state.

ROLLBACK: It may be possible that all changes made by
the transaction are not reflected top the database due to any

kind of failure. In this situation, transaction go to abort or
error state. An aborted transaction that made no changes to the

database is terminated without the need for rollback.

END: A hansaction can end in three different states:

a. Successful termination'A transaction ends after acommit operation.
b. Suicidal termination' A transaction detects an error during its processing and thus

aborts and performs a rollback operation.
c. Murderous termination: The operating system or the DBMS can force the transaction to

be aborted for anv reason.

5.

Database unmodified

Flgure 3.1: Different states of a transaction

4. Goncurrent Execution

Transaction processing systems usually allow multiple transactions to run concgrrently. Concurrent
execution of multiple hansactions causes several complications with the consistency of data and may
result in some inconsistent database, whereas serial execution of transactions is much easier to
implement and maintain the consistency of database.

Read (X)

Write (X)

Read (Z)

Write (Z)

Read (Y)

Write (Y)

A schedule Involvlng two transactions

The schedule shown above represents an interleaved execution of two transactions. Ensuring
transactions isolation while permitting such concurrent execution is difficult, but is necessary for
performance reasons.

Following are the two advantages of concurrent execution:

1. Improved resource utilization and throughput: While one transaction is waiting for a page

to be read from disk, the CPU can process another transaction. This is because VO activity can
be done in parallel with CPU activity in a computer. Overlapping VO and CPU activity
reduces the amount of time disks and processors are idle and increases system throughput.

Throughput is the number of transactions executed in a given amount of time. Because of this
resource utilization has also increased as the idle time is reduced.

2. Reduced waiting time: There is mix of transactions running on a system. Some transaction
may be short and some long. If transactions are run serially short transaction may have to wait
for a preceding long ffansaction to complete. But if we run them concurrently then the waiting
time of short transaction is reduced. It also reduces the average response time. Average
response time is the average time of the transaction to be completed after it has been

submitted.

Problems in Goncurrent execution

1. A schedule involving consistent, committed transactions could
run against a consistent database and leave it in an

inconsistent state.

2. Two actions on the same data object conflict if at least one of
them is write.

3. The three situations can be described in terms of when the
actions of t"vo hansactions T0 and Tl conflict with each other.

i. Reading uncommitted data (WR conflicts): A transaction T1 could read a database
object X that has been modified by another transaction T0 which has not yet committed.
Such a read is called a dirty read.

For example, consider two transactions T0 and Tl each of which run alone, preserve
database consistency. Transactions T0 transfer 200 Rs. from account X to Y and
transaction T1 add both X and Y bv 8%o interest to each account.

Read (X) | Read (X)
X=X-200 lX=X+(X.0.8)

Write (X) | Write (X)
Read (Y) | Read (y)
y=y+200 ly=y+(y*0.9)

Write (Y) | Write (y)
Commit I Commit

suppose that their actions are interleaved (Transaction T0 and r1 interleaved) so that.

Read (X)
X= X -200
Write (X)

Read (Y)+
Y=Y+200
Write (Y)
Commit

Read (X)
X=X+(X.0.8)
Write (X)
Read (Y)
y=y+(y.0.9)
Write (Y)
Commit

The account tansfer transaction T0 deducts 200 Rs. from account X. The interest
deposit transaction T1 reads current value of accounts X and y and adds g % inertest to
each. The account hansfer transaction T1 credits 200 Rs. to account y.

The problem is that:

a' Transaction T0 may write some value for X that makes database inconsistent.
b' As long as T0 overwriies this value with a correct value of X before committing

no harm is done if.
T0 and T1 run in same serial order because kansaction Tl would not see the
temporary inconsist,ency.

c' Its interleaved execution can expose this inconsistency and lead to an inconsistent
final database state.

Unrepeatable Reads (RW con/Iicts): A hansaction Tl could change the value of an
object X that has been read by transaction T0 while T1 is still in progress. Transactions
T0 reads the value of X again and it is changed by another hansaction T1 between the
two reads. Transaction T0 and T1 read the same value.

Overwriting uncommitted Data ftItW conflicts): A transaction T1 could overwrite the

value of an object X, which has already been modified by a transaction T0, while T0 is
still in progress. Even if Tl does not read the value of X written by T0.

For example. Suppose that Deepak and Sourabh are two employees and their salaries

must be equal. Transaction T0 set to salaries to Rs. 2000 and T1 set to salaries Rs. 3000.

lf we execute serially in the serial orderT0 followedbyTt bothreceive Rs.3000, the

serial order T1 followed T0 both receive Rs. 2000. Notice that neither transaction read a

salary value before writing it such write is called blind write.

Schedule

A schedule is a list of actions (reading, writing, aborting, committing) from a set of transactions and

the order in which two action$ of transactions T appear in a schedule must be the same as the order

in which they appear in T.

Schedules represent sequential order in which instructions are executed in the system. S schedule of
n transactions T0,T1,T2,......,T11 is an ordering of the operations of the transactions subject to the

constraint that for each transaction Ti that is in S, the operations of Ti in S must appear in the same

order in which they occur in Ti. The operations of other transactions Tj can be interleaved with the

operations of Ti in S.

For example: Consider the simple banking system which has number of accounts and a set of
transactions that access and update those accounts. Consider two transactions T0 and T1 which

transfer funds from one account to another. Transactions T0 transfer Rs.200 from account P to
account Q. it is defined as,

Transaction T1 transfer 20 percent of the balance from account P to account Q. it is defined as,

There are two types of schedule:

Read (P).

TemP =P
* 9.2'

Write (P);

Read (Q);

Q= Q + Temp;

Write (Q);

1. serial schedule: The tansactions that are executed from start
to end one by one is called serial schedule. It consists of a
sequence of instructions from various transactions where the
instructions belonging to one single transactions appear
together in that schedule.

Schedule 1: A serial schedule T0 followed by T1.

Schedute 1

Schedule 2: A serial schedule Tl followed bv T0.

Schedule 2

Read (A);
A = A -200;

Write (A);

Read (B);

B=B+200;
Write (B):

Read (A);

TemP=A"0.2;
A=A-temp;
Write (A);

Read (B);

B=B+Temp;
Write (B);

Read (A);

A = A -200;

Write (A);

Read (B);

B=B+200;
Write (B);

Read (A);

TemP = A.0.2;
A=A-temp;
Write (A);

Read (B);

B=B+Temp;
Write (B);

7 Concurrent Schedule: When several transactions are

corresponding schedule is called concurrent schedule.

executed concurrently the

Schedule 3: A concunent schedule

Schedule 3

Read (A)

A=A-200
Write (A) | Read (A)

TemP= A * 0.2

A=A-Temp
Write (A)

Read (B)

B=B+200 |

Write (B) I Read (B)

B=B+Temp
Write (B)

Several execution sequences are possible. The schedule 3 will produce the same result as schedule 1.

But all concurrent executions may not result in a correct state.

5, Serializability

Serializability is the generally accepted criterion for correctness for

the execution ofa given set offfansaction. Transaction is considered

to be correct if it is serializable i.e. it produce the same result as

some serial execution of the same transaction, running them one at a

time.

A serializable schedule is called as given interleaved execution ofa
set of n transactions.

The fotlowing conditions holdfor each transaction in the set:

1. All transactions are correct i.e. if any one of the transactions is

consistent database, the resulting database will be consistent.
executed by itself on a

2. Any serial execution ofthe transactions is also correct and preserves the consistency ofthe
database.

.#.P#.ss#ti?iitii#i,#r#

There are two types Serializablity

1. ConflictSerializability

2. ViewSerializabilitv

5.{ Gonflict Serializabitity

A schedule is conflict serializable if it is conflict equivalent to some
serial schedule. Every conflict serializable schedule is serializable.

consider that T0 and Tl are two transactions and s is schedule for
T0 and rl.Ii and Ij are two instructions. If Ii and Ij refer to different
data items then Ii and Ij can be executed in any sequence. But if Ii
and Ij refer to same data items then the order of two inskuctions mav
matter.

Here Ii and Ij can be a read or write operation only. There are 4 conditions that need to be
considered.

l. Ii:Read (X) and Ij:Read (X).

The order of Ii and Ij does not matter because both are reading the data.

2' Ii:Read (X) and Ij:Write (X). If Ii come before Ij then Ti does not read the value of X that is
written by Tl in Ij. If Ij comes before Ii the T0 reads the value of X i.e. written by Tl.Thus
order Ii and Ij matters.

3' Ii:Write (X) and Ij:Read (X) The order of Ii and Ij matters for the same reasons in step 2.
4' Ii:write (x) and Ij:write (X). If both are Write operations their order does not affect either in

T0 or T1. But if next operation is Read (X) in S then the order is important. If there is no
operation after Ii and Ij in S then the order of Ii and Ij directly affects the final value X in the
database that results from schedule.

We say that Ii and Ij conflict if they are operations by different transactions on the same data item
and at least one of these instructions is a Write operation.

Let us see the concept of conflict serializability with example of schedule L The Write (X)
instruction of T0 conflicts with Read (X) instruction of T1. The Write (X) instruction of Tl does not
conflict with Read (Y) instruction of T1 because they access different data items.

TO T4II

Read (X)
Write (Y)

Read (Y)

Write (Y)

Conflict

Read (X)

Write (X)

Read (Y)

>)' Write (Y)

Schedule 2 is generated after swapping Write (X) instruction of Tt with Read (Y) instruction of T0.

In the same way we could swap:

1. Swap the Read (Y) instruction of T0 with Read (X) instruction of T1.

2. Swap the Write (Y) instruction of T0 with Write (X) instruction of T1.

3. Swap the Write (Y) instruction of T0 with Read (X) instruction of T1.

The Final Result of these Swaps is shown as Schedule S'.

If a schedule S can be transformed into a schedule S' by a series of Swaps of non-conflicting

instructions. We call S and S'are Conflict equivalent.

Testi ng for Conflict Serializability

To check conflict serializablity is to draw a precedence graph for given schedule and ifthe cycle is

not present in the schedule then we can say that it is conflict serializable schedule.

Precedence graph contain vertices, that is, fransactions present in schedule and edges are conflicting
instructions in transactions.

Algorithm can be used to test a schedule for conflict serializability. The algorithm looks at only read

and write operations in a schedule to a construct precedence graph (or serialization gaph) which is

Schedule S'

Read (X)
Write (X)
Read (Y)

Write (Y)
Read (X)
Write (X)
Read (Y)
Write (Y)

directed graph G:Q'{,E) that consists of a set of nodes N:{ T0,T1,.....,Tn} and a set of directed
edges E: {e 1,e2,. ...,en)}.

Algorithm: Testing conflict serializability of a schedule S

1. For each transaction Ti participating in schedule S, create a node labeled Ti in the precedence
gaph.

2. For each case in S where ! executes a read (X) after Ti executes a write (X), create an edge
(Ti + Tj) in the precedence gaph.

3. For each case in S where Tj executes a write (X) after Ti executes a read (X), create an edge
(Ti + Ij) in the precedence gaph.

4. For each case in S where Tj executes a write (X) after Ti executes a write (X), create an edge
(Ti -+ Tj) in the precedence gaph.

5. The schedule S is serializable ifand only ifthe precedence graph has no cycles.

For example: Consider following transactions

A precedence graph, also named conflict graph and serializability
gaph, is used in the study of database theory within the realm of
computer science.

The precedence graphfor a schedule S contains:

i. A node for each committed transaction in S.

ii. An arc from Ti to]j if an action of Ti precedes and conflicts
with one of Ij's actions.

Use of precedence graph

Read (X)

X=X-N
Write (X)

Read (Y)

Y=Y+N
Write (Y)

Precedence graph

It is used for checking deadlock. If cycle exists in a graph then there is deadlock in the system.

1. Serial schedule 1 transaction T0 followed by TL

Precedence graph for serial schedule I

Serial schedule 2 transaction T1 followed by T0

Schedule 2

Read (X)
X=X+ M
Write (X)

Read (X)
X=X-N
Write (X)
Read (Y)
Y=Y+N
Write (Y)

Precedence graph for serial schedule 2

Non- serial schedule 3 transaction T0 followed bv TL

Read (X)
X=X-N
Write (X)
Read (Y)

Y=Y+N
Write (Y)

Read (X)
X=X+M
Write (X)

Schedule 3

Precedence graph for non-serial schedule 3 (not Serializable)

Non- serial schedule 4 transaction T0 followed bv Tl

Schedule 4

Read (X)

X=X-N
Write (X)

Read (X)

X=X+M
Write (X)

Read (Y)

Y=Y+N
Write (Y)

Precedence graph for non-serial schedule 4(Serlatlzable)

Read (X)

X=X-N

Write (X)

Read (Y)

Y=Y+N
Write (Y)

Read (X)

X=X+M

Write (X)

5.2 View Serializability

A schedule S is view serializability if it is view equivalent to a serial schedule. Every conflict

serializable schedule is also view serializable but there are view serializable schedules that are not

conflict serializable.

Consider two schedules S and S'. The schedules S and S' are said to be view equivalent if the

following three conditions hold

1. For each data item X if hansaction Ti reads the initial value of X in schedule S, then

transaction Ti must in schedule S' also read the initial value of Q.

2. For each data item X, if transaction Ti executes Read (A) in schedule S and that value was

produced by transaction, Ti must in schedule S' also read the value of X that was produced by

transaction Ti.

3. For each data item X, the transaction that performs the final Write (X) operation in schedule S

must perform the final Write (X) operation in schedule S'.

A condition 1 and,2 ensures that same value is read in both the schedules. Condition 3 together with

I and2 ensures that final result is same.

For example: Following schedule is a view serializable schedule

Read (X)

Write (X)

Write (X)

Write (X)

It is View Equivalent to the serial schedule <T0, T1, T2> since the Read (X) instructions reads the

initial value of X in both schedules and T2 performs the final write of X in both schedules.

ln above example Transactions T1 and T2 perform Write (X) operations without having performed a

Read (X) operation. Write of this sort are called blind write. Blind write appear in any view

serializable schedule that is not conflict serializable.

ffi
6. Recoverability

We have studied that schedules are acceptable from the viewpoint of consistency of the database,

assuming implicitly that there are no fransaction failures. We now address the effect of ffansaction

failures during concurrent execution.

If transaction Ti fails for whatever reason we need to undo the effect of this transaction to ensure the

atomicity property of the transaction. In a system that allows concurrent execution it is necessary

also to ensure that any transaction Tj that is dependent on it is also aborted. To achieve this surety we

need to place restrictions on the type of schedules permitted in the system. ln the following two

subsections we address the issue of what schedules are acceptable from the viewpoint described.

6.{ Recoverable Schedule

A recoverable schedule is one where for each pair of fansaction Ti and Tj such that Ti reads the data

item previously written by Ti the commit operation of Ti appear before commit operation of Ti.

Consider schedule shown in which T0 is a transaction that performs only one instruction Read (A).

Suppose that the system allows T1 to commit immediately after executing the Read (A) instruction.

Thus T1 commits before T0 does. Now suppose that T0 fails before it commits. Since T1 has read

the value of data item X written by T0 we must about Tl to ensure transaction atomicity. However

T1 has already committed and cannot be aborted. Thus we have a situation where it is impossible to

recover correctly from the failure of T0.

ln the above schedule with the commit happening immediately after the Read (X) instruction is an

example of non -recoverable schedule, which should not be allowed. Most of the database system

requires that all schedules be recoverable.

6.2 Gascadless Schedule

Cascadless schedule is recoverable schedule. A single transaction

failure leads to a series of transaction rollbacks, this is called

cascading rollback. A cascadless schedule is one where for each pair

of transaction Ti and such that Tj reads a data item previously

written by Ti, the commit operation of appears before the read

operation ofTj.

Consider a transaction T0 writes a value of X that is read by

transaction T1. Transactions T1 writes a value of X that is read by

transaction T2. Suppose that, at this point T0 fails, T0 must be rolled

back. Since T2 is dependent on Tl, T2 must be rolled back. This

event in which a single transaction failure leads to a serial of
hansaction rollbacks is called cascading rollback.

Cascading rollback is undesirable, since it leads to undoing of a
significant amount of work. It is desirable to restrict the schedules to

those where cascading rollbacks cannot occur.

Solved Examples

1. Consider the following transaction. Find out two schedules

serializable to serial schedule <T1, T2, T3>

Read (X)

Read (Y)

Write (X)

Read (Z)

Read (Y)

Y=Y+Z
Write (Y)

Read (X)

X=N-Z
Write (X)

Read (Y)

Read (Z)

Y=Y+50
Write (Y)

Z=Z+Y
Write (Y)

Read (X)

x=x+100
Write (X)

Read (Y)

Y=Y-100
Write (Y)

Solution

First we write serial schedule <T1" T2. T3>

Read (X)
x=x+100
Write (X)
Read (Y)
Y=Y-100
Write (Y)

Read (Z)
Read (Y)

Y=Y+Z
Write (Y)

Read (X)
X=N-Z
Write (X)

Read (Y)
Read (Z)
Y=Y+50
Write (Y)
Z= Z+Y
Write (Y)

Serializable schedule I

Read (X)
X=X+100
Write (X)

Read (Y)
Y=Y-100
Write (Y)

Read (Z)

Read (Y)
Y=Y+Z
Write (Y)

Read (X)
X=N-Z
Write (X)

Read (Y)

Read (Z)
Y=Y+50
Write (Y)
Z= Z+Y
Write (Y)

il.i:)l.iEl:if,jsl:ril:!,ij.j3 ii,Tl.it::"lrr:tilTllitil ; ii;l$ri;i,.tr€:i::irJ,

Read (X)
X=X+100
Write (X)
Read (Y)
Y=Y-100
Write (Y)

Read (Z)

Read (Y)
Y=Y+Z
Write (Y)

Read (X)
X=N-Z
Write.(X)

Read (Y)
Read (Z)
Y=Y+50
Write (Y)

Z= Z+Y
Write (Y)

Consider the following transaction

Solution
First we write serial schedule <T1. T2" T3>

a.
b.

Find out non-serial schedule. which is serializable to serial schedule <T1, T2, T3>
Find out non-serial schedule" which is serializable to serial schedule <T3, T1, T2>.

Read (X)

Read (Y)

Y=Y-X
Write (Y)

Read (X)
Read (Z)
X=n+Z

Write (X)
Read (Z)
Z=Z+ 10
Read (Y)
Y=Y+Z
Write (Z)
Write (Y) Read (X)

Read (Y)
Y=Y-X

Read (X)
Read (Z)

X=n+Z
Write (X)

Read (Z)
Z=Z+10

Read (Y)
Y=Y+Z
Write (Z)
Write (Y)

Read (X)

Read (Y)
Y=Y-X

Non-serial schedule for serial <T1, T2, T3>

First we write serial schedule

Read (X)
Read (Z)
X=n+Z

Write (X)

Read (Z)
Z=Z+ 10
Read (Y)

Y=Y+Z
Write (Z)

Write (Y)

Read (X)

Read (Y)
Y=Y-X
Write ff)

T2>
if iiii,'X,.X{,-"ii.T&H}T;iF

Read (X)
Read (Y)
Y=Y-X
Write (Y)

Read (X)
Read (Z)
X=n+Z
Write (X)

Read (Z)
Z=Z+10
Read (Y)
Y=Y+Z
Write (Z)
Write (Y)

Non-serial schedule for serial <T3, T1, T2>

Read (X)

Read (Y)
Y=Y-X
Write (Y)

Read (X)
Read (Z)

X=n+Z

Read (Z)
Z=Z+ 10
Read (Y)

Y=Y+Z
Write (Z)
Write (Y)

Consider the following transaction. Give at least 2 serial schedules.

Solution

Suppose we consider Transaction T0 followed by Transaction T1.

Serial Schedule 1

Read (A)
A =A -50
Write (A)
Read (B)
B=B+50
Write (B)

Read (A)
t=A*0.1
A=A-t
Write (A)
Read (B)
B=B+t
Write (B)

Read (A)
t=A*0.1
A=A-t
Write (A)
Read (B)
B=B+t

Read (A)
A =A -50
Write (A)
Read (B)
B=B+50
Write (B)

suppose we consider Transaction T1 followed by Transaction T0

Serial Schedule 2

Read (A)

A =A -50

Write (A)

Read (B)
B=B+50
Write (B)

Read (A)

t=A*0.1
A=A-t
Write (A)

Read (B)

B=B+t
Write (B

Consider the following transaction. Find out concurrent schedule, which is serializable to
serial schedule <T0, T1>

Read (A)
A =A -50
Write (A)
Read (B)
B=B+50
Write (B)

Read (A)
t=A*0.1
A=A-t
Write (A)
Read (B)
B=B+t

Following schedule is called as concurre serialihich iwhrch is serializable

Read (A)

A =A -50

Write (A)

Read (B)

B=B+50
Write (B)

Read (A)
t=A*0.1
A=A-t
Write (A)

Read (B)

B=B+t
Write (B)

Consider following transactions. Give two Non-serial
Schedules that are serializable:

Read(X)

X=X-1000

Write(X)

Read(Y)

Y=Y+1 000

Write(Y)

Read(Y)

Y=Y+5000

Write(Y)

Read(Z)

z=z+5000

Write(Z)

Read(X)

X=X-1000

Write(X)

Read(Y)

Y=Y+1000

Write(Y)

Read(Y)

Y=Y+5000

Write(Y)

Read(Z)

Z=Z+5000

Write(Z)

Read(X)

X=X-1000

Write(X)

Read(Y)

Y=Y+1000

Write(Y)

Read(Y)

Y=Y+5000

Write(Y)

Read(Z)

Z=Z+500O

Write(Z)

Consider the following Transactions. Give two Non-serial
schedules that are serializable:

Read(X)
X=X+10

Write(X)
Read(Y)

Y=Y+20
Write(Y)
Read(Z)

Z=Z+30
Write(Z)

Read(Y)
Y=Y-10
Write(Y)

Read(Z)

Z=Z-20
Write(Z)

Solutlon

Following are the two schedules which are serializable.
,,iriT''+,i,;r

Read(X)
X=X+10
Write(X)

Read(Y)
Y=Y+20
Write(Y)

Read(Z)
Z=Z+30
Write/Z)

Read(Y)
Y=Y-10
Write(Y)

Read(Z)
Z=7-2Q
Write(Z)

Read(X)
X=X+10
Write(X)

Read(Y)
Y=Y+20
Write(Y)
Read(Z)
Z=Z+30
Write(Z)

Read(Y)
Y=Y-10
Write(Y)

Read(Z)
Z=Z-20
Write(Z)

Consider the following Non-serial Schedule

,,Tl -r

Read(X)
X:=X-N

Write(X)
Read(Y)

Y: =Y+N
Writeff)

Read(X)
X: =X+N

Write(X)

Is the schedule serializable to a serial schedule <Tr, Tz >?

Solution
i. First we draw serial schedule T1, T

ln the given non serial schedule Read(X) of Tz reads the original value of X where in serial

schedule (Tr,Tz>read(X) of Tz reads the value updated by write(X) of T1. Thus the order of
conflicting instructions is not same in both the schedules. Thus, the gtven non serial schedule

is not serializable.

We can draw precedence graph for given non serial schedule. There exists a cycle in the graph

so given non serial schedule is not serializable.

8. Consider the following transaction.
iri:::.t i rl

Read(A)
A:=A-70

Write (A)
Read(B)

B:=B+70
Write(B)

Read(A)
t: =A*0.1
A= A-t
Write (A)
Read(B)
B=B+t
Write(B)

Give at least two serial schedules.

ffi
Solution

Non serial schedule S,:

Non serial schedule 52:

.T4.,
Read(A)

A=A-70

Write(A)

Read(B)

B=B+70

Write(B)

Read(A)

t=A*O.1

A=A-t
Write(A)

Read(B)
B=B+t

Write(B)

9. Consider the following transactions. .Find out tu;
concurrent schedule, which will be serializable to serial
schedule (T1eT2>:

Read (A)

A:=A-70
Write (A)

Read (B)
B:=B+70
Write (B)

Read (B)

B:=B+10
Write (B)

Read (C)

C:=C+50
Write (C)

Solution

The schedules 51 and 52 shown below can be 2 non serial schedules that are serializable to given
schedule.

:,Tg ri' 'i;i
Read(A)
A=A-70
Write(A)

Read(B)
B=B+70
Write(B)

Read(A)
t=A*0.1
A=A-t

Write(A)

Read(B)
B=B+t

Write(B)

ffi
Following is schedule Sr

Following is schedule Sz

Ti'r

Read (A)

A:=A - 70
Write (A)

Read (B)

B:=B+70
Write (B)

Read (B)

B:=B + '10

Write (B)

Read (C)

C:= C+ 50

Write (C)

10. Consider the following transaction. Give two non serial
schedules that are serializable.

."Tz.,ii
Read(A)
A=A+5

Write(A)
Read(B)
Read(C)
B=B+10
Write(B)
C=C+15
Write(C'l

Read(X)
x=x-1 0

Write(X)
Read(B)
B=B-20
Write(B)

Solution

The schedules S1 and 52 shown below can be 2 non serial schedules that are serializable to given

schedule.

' Ti,.,
Read (A)

A:=A-70
Write (A)

Read (B)

B:=B+70
Write (B)

Read (B)

B:=B+10
Write (B)

Read (G)

C:=C+50
Write (C)

Following is schedule Sr:

i,.i, r;; :T-i..ii : ;:.;'i:

Read(A)
A=A+5

Write(A)

Read(B)

Read(C)

B=B+10
Write(B)
C=C+15

Write(C)

Read(X)

X=X-10
Write(X)

Read(B)

B=B-20

Write(B)

Read(A)

A=A+5
Write(A)

Read(B)

Read(C)
B=B+10

Write(B)

C=C+15

Read(X)

X=X-10
Write(X)

Read(B)
B=B-20

Write(B)

Following is schedule 52:

11. Consider the following transaction. Find out a non serial
schedule which is serializable to serial schedule (T1,T2;T3>

titijjlif,:iit;;i{#F

Read(X)
Read(Y)

Y=Y-X
Write(Y)

Read(X)

Read(Z)

X=X+Z
Wdte(X)

Read(Z)
Read(Y)

Y=Y+Z
WritefY)

Solution
Non serial schedule Sr:

Non serial schedule Sz:

T,1.t,,. 'Tr,, ,

Read(X)

Read(Y)
Y=Y-X

Write(Y)

Read(X)
Read(Z)
X=X+Z

Write(X)

Read(Z)
Read(Y)
Y=Y+Z
Write(Y)

.'Tr'.,
Read(X)

Read(Y)
Y=Y-X

Write(Y)

Read(X)

Read(Z)
X=X+Z
Writefi)

Read(Z)

Read(Y)
Y=Y+Z
Write(Y)

read (x)
x=x-m
write (x)
read (y)

Y=Y+m

read (x)
x=x+n
write (x)

Solution
First schedule Sr

read (x)
x=x+n
write (x)

read (x)
x=x-m
write (x)

read
y=y
write

Second chedule
ii'.+-1t?ir.1.ii+.;lf.+!;.i!.,1l.1

read (x)
x=x-m
write (x)

read (y)

Y=Y+m
write (y)

read (x)
x=x+n

write (x)

13. Consider the following transaction. Find out a non serial schedule which is serializable to
serial schedule <T1, T2, T3>l

Solution
Two non serial schedules 51, 52
follows.

that are serializable to above serial schedule {Tr, Tz, T:> are as

read (x)
x=x+100

write (x)
read (y)

y=y_100
write (y)

(z)
(v)
+z
(y)
(x)
-z

read
read
y=y
write
read
x=n
write

read (y)
read (z)

y=y+50
write (y)
z=z+y
write (y)

read(x)
x=x+1 00
write(x)

read(y)
y=y-100
write(z)

read(z)
read(x)
x=x-z

write(x)

read(y)
Y=Y+z

write(y)
read(y)
read(z)
y=y+50
write(y)
z=z+y

write(z

x=x+1 00
write(x)
read(y)

y=y_,|00
write(z)

read(z)

read(y)
Y=Y+z

write(y)

read(x)
x=x-z

write(x)

read(y)
read(z)
y=y+s0
write(y)

z=z+y
write(z)

following transactions.14. Consider the

Give two non
Solution

serial schedules that are serializable.

x=x+1000

i:,t::'L*t':i'iTlf *i'i-i'i!

Read(x)
x=x+1000
Write(x)

Read(y)
v=v-500
Write(v)

Read(y)
v=v+1000
Write(v)

Read(z)
z= z-500
Write(z)

Consider the following tra4sactigls.

Give two non serial sched
Solution

il+t'i;iiliiif.i?'F'.#'it-"{ffi

1.

2.
J.
4.
5.

tow non-sena

Is this schedule

a
J.

4.
5.

6.
7.

lng non-senal
serializable?

Explain various states of tranffi nlrxGtail.

.iit:::ii:ilili+;riFiri.;.1;l$ n tiriii iiirrttiiliitia;.i.1.

Read (A) Read Read (B)
A=A+100 Read (B) B=B+200
Write (A) t-t=Fl+(Write (B)
Read (B) Write (B) Read (C)
B=B+100 Read (A) C-C+200
Write (B) A=A-C Write (C)

Write (A)

What is Schedule? Explain types of schedule with example.
What are the various problems that occur in concurrent
transaction?
What is transaction? Explain ACID properties of transaction.
Consider the following transactions. Give two non-serial
schedules that are serializable.

WPU 0uestions
Oct.2015 - 2Ml

14or.2015 - 2Ml
14or.15.12 - 2Ml

14pr.15.11- 2Ml

fOct.l4.1 1.09.Apr.{ 1 - 2Ml

IOct.2014 - 2Ml

tOct.2012- 2Ml

lOct.l 2.1 0.Apr.1 2.1 1 - 2Ml

14or.12.10 - 2Ml
lOct.1 1.Aor.1 0.09 - 2Ml

tOct.2015 - 4Ml

tOct.2015 - 4trfl

IOct.2015- 4Ml

lApr.15.Oct.11 - 4Ml

IApr.15,Oct.11 - 4M1

schedules t

IOct.2015 - 4Ml 2. Consider

Define Recoverable schedule.
Define: i. commit ii. Rollback
What is serializability? List the types of serializability.
What is schedule? Give types of schedule.

6. What is a precedence graph?
7. What is Cascadeless schedule?
8. What is Transaction? List Properties of Transaction.
9. What is Serializability?
10. List the states of ffansaction.

What is transaction? State operations performed on transaction.

8. Consider the following transactions. Give two non-serial schedules lAor.2015-4Ml
that are serializable.

Consider the following transactions. Give two non-serial schedules lApr.2015'4Ml
that are serializable.

9.

10.

11.

t2.

Explain ACID properties of transaction in detail.
Explain recoverable schedule and cascadeless schedule with example.
Consider the

Give two non serial schedules that are serializable.

1Oct.2O14- 4Ml

Give two non serial schedules that are serializable.
Consider following the transactions. Give two Non-serial Schedules tOct.2012- 4Ml
that are serializable:

ii;lir-i;,tli;:.;f,rt',..i.'-ii .]ri.:4 r:tl?i:

Read(X) Readff)
X=X-1000 Y=Y+5000
Write(X) Write(Y)
Read(Y)

Y=Y+1 Z=Z+5000
Writeff) Write(Z)

tOct.14.Apr.12- 4Ml

tOct.14.10 - 4Ml

tOct2014- 4Ml

13.

14.

lOct.2012- 4Ml 15. Consider the following Transactions. Give two Non-serial
schedules that are serializable:

,i,::;,,:T;:l

Read(X)
X=X+10
Write(X)
Read(Y)
Y=Y+20
Write(Y)
Read(Z)
Z=Z+30
Wnle-(7\

Keao(Y)
Y=Y-10
Write(Y)
Read(Z)
Z=Z-20
Write(Z)

lApr.12.Oct.11.094Ml 16. Consider the followi I Schedule-sena
:T=i....: ':;:.\,.:.

Read(X)
X:=X-N

Write(X)
Read(Y)

Y: =Y+N
WritefY)

Read(X)
X: =X+N

Write(X)

Is the schedule serializable to a serial schedule <T1, T2 >?
tApr.2012- 4Ml t7. Consider the followins transaction

.i:,i.:r fiiii:
Read(A)

A:=A-70
Write (A)
Read(B)

B:=B+70
Write(B)

Keao(A)
t:=A*0.1
A =A-t
Write (A)
Read(B)
B=B+t
Write(B)

Give atleast two serial schedules.

Explain different types of Failure.

Non

tOct.2011 - 4Ml

IOct.2011 - 4Ml

IAor.11. Oct.l0.09 - 4Ml

lApr.2011 - 4Ml

Read (A)
A:= A -70

Write (A)
Read (B)

B:= B +70
Write (B)

Read (B)
B:=B+10
Write (B)
Read (C)

C:= C +50
Write (C)

18.

19. Consider the following transactions. Find out two concrrrent
schedule, whichgill be serializable to serial schedule {'r,Tz>:

20.

2t.

What is transaction? Explain states of transaction with
diagram.
Explain concurrent execution of transaction with example and
advantages of concu:rent execution.

o"
uEt0t

elalrpL 4

GoilcuRREtucY
GorurRoL

iiirrr:i:'r:riiliitj:iii;ni

1. Goncurrency Gontrol

Concurrent execution of multiple transactions causes several complications with the consistency of
data and may result in some inconsistent database whereas serial execution of transactions is much
easier to implement and maintain the consistency of database.

There are two reasons for using concr[rency

1. A transaction consists of multiple steps. Some involve UO activity (Read/Write) others
involve CPU activity. The CPU and disks in computers can operate in parallel. Therefore, VO
activity can be done in parallel with processing at CPU. This can be used to run multiple
transactions in parallel. This concurrent execution oftransactions increases the throughput of
system i.e. it will increase the number of transactions that can be executed in a given amount
of time.

2. The processor running on the system may differ in execution time i.e. some short and some
long transactions. If transactions are running serially a short transaction may have to wait for a
preceding long transaction to complete, which can lead to unpredictable delays in running a
transaction. If the transactions are on different parts of database, it is better to run them
concurrently, sharing the CPU cycles and disk accesses among them. It reduces the

unpredictable delay in running the transaction.

Lock Based Protocols

One way to ensure serializability is to require that data items be accessed in a muhrally exclusive
manner, that is, while one hansaction is accessing a data item, no other transaction can modify that
data item. The most common method used to implement this requirement is to allow a transaction to
access a data item only if it is currently holding a lock on that item.

2.1 Locks

A lock is a variable associated with the data item that describes the
status of the item with respect to possible operations that can be
applied to the item. Generally there is one lock for each data item in
the database, which is, used to synchronise the access by concurrcnt
transactions to the database. There are various modes in which a data
item may be locked.

Types of Lock

1. Binary Locks: A biirary lock can have two stages or values.

i. Lock state (1)

ii. Unlock state (0)

Ifthe value ofthe lock on X is 1 then item X cannot be accessed by a database operation thnt
requests the item. If the value of the lock on X is 0 the item can be accessed bv a databnsc
when requested.

Two operations lock item and unlocked item are used in binary locking.

A transaction requests access to an item X by first requesting a lock (X) operation. If X is
Iocked by another transaction then the transaction is forced to wait and if X is not already
locked by any other transaction then the transaction is allowed to access item X. When the
transaction finishes it's processing on item X it should unlock the item X.

For a binary locking scherne every transaction mustfollow the rules below:
i. A transaction T must issue the operation lock (X) before any read (X) or write (X)

operations are performed in T.

2.

iifjtir,ltiif+iit{iif ._ff tf,li

ii. Transactions T must issue the operation unlock (X) after all read (X) and write (X)
operations are completed in T.

iii. A transaction T will not issue a lock (X) operation if it already holds the lock on X.

iv. A transaction T will not issue an unlock (X) operation unless it already holds the lock on X.

Lock and unlock operations must be implemented as indivisible units i.e. no interleaving
should be allowed once a lock or unlock operation is started until the operation terminates or
the transaction waits.

Shared or Exclusive Lock

Shared: If a transaction Ti has obtained a shared-mode lock (denoted by S) on item Q, then Ti
can read, but cannot write Q. The shared lock is also called a read lock

The intention of this mode of locking is to ensure that the data item does not undergo any
modifications while it is locked in this mode. Any number of transactions can concurrently
lock and access a data-item in the shared mode, but none of these transactions can modify the
data-item.

Exclusive: If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on item Q,
then Ti can both read and write Q. The exclusive lock is also called an update or a write lock.

The intention of this mode of locking is to provide exclusive use of the data-item to one
transaction. If a transaction T locks a data-item Q in an exclusive mode, no other transaction
can access Q, not even to read Q, until the lock is released by transaction T.

We require that every transaction request a lock in an appropriate mode on data item Q,
depending on the types of operations that it will perform on Q. The transaction makes the
request to the concurrency control manager. The transaction can proceed with the operation
only after concrurency control manager grants the lock to the transaction.

Share/Exclusive locking scheme mustfollow the rules:

i. A transaction T must issue the operation read lock (X) or write lock (X) before any
read (X) operation is performed in T.

ii. A hansaction T must issue the operation write lock (X) before any write (X)
operation is performed in T.

iii. A transaction T must issue the operation unlock (X) after all read (X) and write (X)
operations are completed in T.

iv. A transition T will not issue read lock (X) operation if it already holds a read lock (X)
or a write lock (X).

v. A transaction T will not issue write lock (X) operation if it already holds a read lock (X)
or write lock (X)

vi. A transaction T will not issue an unlock (X) operation unless it already holds a read
lock (X) or write lock (X).

2.2 Granting of Locks

When a transaction requests a lock on a data-item in a particular mode, and no other transaction has
a lock on the same data-item in a conflicting mode, the lock can be granted. However, care must be
taken to avoid the following scenario. Suppose a transaction T2 has a shared mode lock on a data-
item and another transaction T1 request an exclusive-mode lock on the data-item. Clearly Tl has to
wait for T2 to release the shared-mode lock. Meanwhile, a transaction T3 may request a shared-
mode lock on the same data-item. The lock request is compatible with the lock granted to T2, so T3
may be granted the shared mode-lock. At this point T2 may release the lock, but still Tl has to wait
for T3 to finish. But again, there may be a new transaction T4 that requests a shared-mode lock on
the same data-item, and is granted the lock before T3 releases it. In fact, it is possible that there is a
sequence of transactions that each requests a shared-mode lock on the data-item, and each
transaction releases the lock a short while after it is granted, but T1 never gets the exclusive-mode
lock on the data-item. The transaction T1 may never make progress, and is said to be starved.

We can avoid starvation of transactions by granting locks in the following manner: When transaction
T1 requests a lock on a data-item Q in a particular mode M, the concurrency-control manager grants
the lock provided that

1. There is no other transaction holding a lock on a in a mode that conflict
with M.

2. There is no other transaction that is waiting for a lock on Q and that made its lock request
before Ti.

Thus, a lock request that is made later will never block a lock request.

2.3 Two-Phase Locking protocol

One protocol that ensrres serializability is the two-phase locking
protocol. This protocol requires that each transaction issue lock and
unlock requests in two phases:

1. Growing phase: A transaction may obtain locks, but may not
release any lock.

2. Shrinking phase: A transaction may release locks, but may
not obtain any new locks.

#.B,ffi,#f $,t{+-ffii{.+l$S$

In the beginning, a transaction is in the growing phase. The

transaction acquires locks as needed. Once the transaction releases a

lock, it enters the shrinking phase, and it can issue no more lock
requests. Two-phase locking protocol ensures confl ict serializability.

Consider any transaction. The point in the schedule where the

transaction has obtained its final lock (the end of its growing phase)

is called the lock point of the transaction. At this moment

transactions can be ordered according to their lock points. This

ordering is the serialiabllity ordering for the transactions.

Two phase locking does not ensure freedom from deadlock.

Example: Following two transactions are two phase transactions

Transaction Tl and T2 are two phase but they are deadlocks.

iilii!:iii r.ri :F$i:jilii.+l!i+J Iriri+ri$
lock -X (B)
read (B)
B=B-50
write (B)

lock - X (A)
read (A)
A=A+50
Write (A)
unlock (B)
unlock (A)

lock - S (A)
read (A)
lock - S (B)

read (B)
display (A +B)
unlock (A)
unlock (B)

lock - S (A)

read (A)

lock - S (B)

read (B)

display (A +B)

unlock (A)

unlock (B)

lock -X (B)

lock -X (B)

B=B-50
write (B)

lock X (A)

A=A+50
Write (A)

unlock (B)

unlock (A)

(S - Shared, X- Exclusive locks)

HereTI has aXlockandT2wants a S on B andT2 has aS lockandTl wants aXonA.

The two-phase locking protocol also has the cascading rollback. The cascading rollback can be
avoided by the variation of two-phase locking protocol called strict two-phase locking protocol. It
has two phases as it also needs that all exclusive mode locks taken by a transaction should be held
until that transaction commits, because of which cascading rollbacks does not occw.

Another variation of two-phase locking protocol is rigorous two-phase locking protocol. It has two
phases. In addition it requires that all locks be held until the transaction commits. Most database
systems implernent either strict or rigorous two phase locking.

Consider the followins two transactions Tl andT?

:;i:;:i;

Read(X1)
Read()(2)
Display (Xl + X2;

If we use the two-phase locking protocol, then Tl must lock X1 in exclusive mode for any
concurrent execution of both transactions to a serial execution. But T1 needs an exclusive lock on
Xl only at the end of its execution, when it writes Xl. Therefore, if T1 could initially lock Xl in
shared mode, and then could later change the lock to exclusive mode, we could get more
concturency, since T1 and T2 could access Xl and X2 simultaneously.

This observation leads to the basic two-phase locking protocol, in which lock conversion are
allowed, upgrading a shared lock to an exclusive lock, and downgrading an exclusive lock to a
shared lock. Lock conversion cannot be allowed at any time. Upgrading can take place in only the
growing phase,whereas downgrading can take place in only the shrinking phase.

i. Upgrading: In growing phase of 2PL, hansaction may issue a lock on database item.
Transaction can acquire shared lock on database item. Transaction can also acquire exclusive

Read (Xl)

:::o'o'

Read (Xn)

Write (X1)

lock on database item. Converting shared lock on exclusive lock on same database item is

called as upgrading.

ii. Downgrading: In shrinking phase of 2PL, transaction release a lock on database item.

Transaction can release shared lock on database item. Transaction can also release exclusive

lock on database item. Converting exclusive lock on shared lock on same database item is

called as downgrading.

iii. Lock point: ln 2phase locking protocol, required data base items are locked in advance and

operations on the data base items are performed. So the 'ol-ock Poinf is when all locks are

held for the whole transaction in growing phase. Following diagram shows the lock point.

Consider thefollowing example for upgrade and downgrade.

Example for uPgrade and downgrade

The database systems automatically gdnerate the lock and unlock instructions for a transaction on the

basis of read and write requests from the transaction.

1. When a transaction Ti issues a read (Q) operation the system issues a lock-S (Q) instruction

followed by the read (Q) instruction.

2. When Ti issues a write (Q) operation the system checks if Ti already holds a shared lock on Q.

If it does the system issues an upgrade (Q) instruction followed by the write (Q) instruction'

Otherwise the system issues a lock X (Q) instruction followed by the write (Q instruction.

3. A1l locks obtained by a transaction are unlocked after that transaction commits or aborts.

For a set of transactions, there may be conflict-serializable schedules that cannot be obtained through

the two-phase locking protocol. However, to obtain conflict-serializable schedules through non-two-

phase locking protocols, we need either to have additional information about the hansaction or to

impose some structure or ordering on the set of data items in the database. ln the absence of such

lock -S (X1)

lock -S ()(2)

lock -S (X3)
lock -S (X4)

lock -S (Xn)
upgrade (X1)

lock - S (X1)

lock - S ()(2)

unlock (Xl)
unlock ()(2)

information, two-phase locking is necessary for conflict serializability. If Ti is a non-two-phase
transaction, it is always possible to find another transaction Tj that is two phases so that there is
schedule possible for Ti and Ij that is not conflict serializable.

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are used
extensively in commercial data base systems.

3. Timestamp-Based Protocols

The locking protocols that have been described thus far determine the order between every pair of
conflicting transactions at execution time by the first lock that both members of the pair request that
involves incompatible modes. Another method for determining the serializability order is to select an
ordering among transactions in advance. The most common method for doing so is to use a
timestamp-ordering scheme.

3.1 Timestamp

A timestamp is a unique identifier created by the DBMS to identi$r a transaction. Timestamp values
are assigned in the order in which the fansactions are submitted to the system, so a timestamp can be
thought of as the transaction start time. We will refer to the timestamp of transaction T as TS (T).
Concurrency control techniques based on timestamp ordering do not use locks, thus deadlocl<s
cannot occur.

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted by TS (Ti).
This timestamp is assigned by the database system before the transaction Ti starts execution. If a
transaction Ti has been assigned timestamp TS (Ti), and a new transaction Tj enters the system,
then TS (Ti) <TS (Tj). There are two simple methods for implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a transaction's time stamp is equal
to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been assigned; that is, a
transaction's timestamp is equal to the value of the counter when the hansaction enters the
sYstem.

The timestamps of the transactions determine the serilizability order.

the system must ensure that the produced schedule is equivalent
transaction Ti appears before transaction'li.

To implement this scheme, we associate with each data item Q two
timestamp values:

1. W-timestamp (Q) denotes the largest timestamp of any

transaction that executed write (Q) successfully.

2. R-timestamp (a) denotes the largest timestamp of any
transaction that executed read (Q) successfully.

These timestamps are updated whenever a new read (Q) or write (Q) instruction is executed.

3.2 Timestamp-Ordering Protocol

The timestamp-ordering protocol ensures that any conflicting read and write operations are executed

in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read (Q).

a. If TS (Ti) < W-timestamp (Q), then Ti needs to read a value of Q that was already

overwritten. Hence, the read operation is rejected, and Ti is rolled back.

b. If TS (Tt >: W-timestamp (Q), then the read operation is executed, and R-timestamp
(a) is set to the maximum of R-timestamp (Q) and TS (Ti)

2. Suppose that transaction Ti issues write (Q).

a. If TS (Ti) < R-timestamp (Q), then the value of Q that Ti is producing was needed

previously, and the system assumed that value would never be produced. Hence, the

system rejects the write operation and rolls Ti back.

b. If TS (Ti) < W-timestamp (Q), then Ti is attempting to write an obsolete value of Q.
Hence, the system rejects this write operation and rolls Ti back.

c. Otherwise, the system executes the write operation and sets W-timestamp (Q to
rs (ri).

If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of either a
read or write operation, the system assigns it a new timestamp and restarts it.

To illustrate this protocol we consider transactions T0 and T1. Transaction T0 displays the contents

of Account X and Y.

Thus, if TS (Ti) <TS (Tj), then
to a serial schedule in which

Read (Y)

Read (X)

Display (X + Y)

Transaction T1 transfers Rs.50 from account X and then displays the contents of both.

Read (Y)

Y=Y-50
Write (Y)

Read (X)

X=X+50
Write (X)

Display (X+ Y)

In presenting schedules under the timestamp protocol we shall assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus in schedule 1 TS (T0) < TS (Tl) and the
schedule is possible under the timestamp protocol.

We note that preceding execution can also be produced by the two-phase locking protocol. There are
however schedules that are possible under the two-phase locking protocol, but are not possible under
the timestamp protocol and vice versa.

Schedule 1

Read (Y)
Read (Y)
Y=Y-50
Write (Y)

Read (X)
Read (X)

Display (X +Y)
X=X+50
Write (X)
Display (X + Y)

The timestamp ordering protocol ensures conflict serializablity. This is because conflicting
operations are processed in timestamp order. The protocol ensures freedom from deadlock since no
transaction ever waits-

The protocol can generate schedules that are not recoverable; however it can be extended to make
the schedule recoverable.

lil,#gi#,ffiH-f.iffi

It can be done in following ways

1. Recoverability and cascadlessness can be ensured by performing all writes together at the end

of the transactions. The writes must be atomic i.e. while the writes are in progress no

transaction is permitted to access any of the data items that have been written.

2. Recoverability and cascadlessness can also be guaranteed by using a limited form of locking
whereby reads of uncommitted items are postponed until the transaction that updated the item

commits.

3. Recoverability alone can be ensured by tracking uncommitted writes and allowing a

transaction Ti to commit only after the commit of any transaction that wrote a value of Ti
read.

3.3 Thomas write rule

A modification of the basic timestamp ordering protocol known as Thomas write rule.

Consider the followins schedule.

Schedule 1

read (Q)

write (Q)
write (Q)

Let us'consider schedule 1 and apply the timestamp ordering protocol.

We assume that TS (T1) < TS (T2). The read (Q) operation of T1 succeeds, as does the write (Q)

operation of T2. When T1 attempts its write (Q) operation, we find that TS (T1) < W-timestamp (Q),

since W-timestamp (Q) : TS (T2). Thus; the write (Q bV T1 is rejected and transaction Tl must be

rolled back.

The rollback of T1 is required by the timestamp ordering protocol, it is unnecessary. Since T2 has

already written Q, the value that T1 is attempting to write is one that will never need to be read. Any

transaction Ti with TS (Ti) < TS (T2) that attempts a read (Q) lnrill be rolled back, since TS (Ti) <W-

timestamp (Q). any transaction Tj with TS (Tj) > TS (T2) must read the value of Q written by T2,

rather than the value written by T1.

This observation leads to a modified version of the timestamp-ordering protocol in which obsolete

write operations can be ignored under certain circumstances. The protocol rules for write operations,

however, are slightly different from the timestamp-ordering protocol. Thomas write rule as follows.

ill,ii.$.,P'o$$,,.ffi

Suppose that transaction Ti issues write (Q):

1. If TS (Ti) < R-timestamp (Q), then the value of Q that Ti is producing was previously needed,
and it had been assumed that the value would never be produced. Hence, the system rejects the
write operation and rolls Ti back.

2- If TS (Ti) < W-timestamp (Q), then Ti is attempting to write an obsolete value of e. Hence,
this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp (e to TS (Ti).

Thomas' write rule makes use of view serializability by, in effect, deleting obsolete write operations
from the transactions that issue them. This modification of kansactions makes it possible to generate
serializable schedules that would not be possible under the other protocols. For example, schedulel
is not conflict serializable and, thus, is not possible under the two-phase locking protocol, the tree
protocol, or the timestamp-ordering protocol. Under Thomas' write rule, the write (e) operation of
T1 would be ignored. The result is a schedule that is view equivalent to the serial schedule <Tl, T>.

Validation-Based Protocols

ln timestamp ordering the transaction timestamp is checked against
the read and write timestamps of the item. such checking represents
overhead during transaction execution with the effect of slowins
down the transactions.
In optimistic concurrency control techniques also known as
validation or certification techniques no checking is done while the
transaction is executing. updates in the transaction are not applied
directly to the database items until the transaction reaches its end.
During transaction execution all updates are applied to locar copies
of the data items that are kept for the transaction.
At the end of transaction execution a validation phase checks
whether any of the transaction updates violate serializablity. certain
information needed by the validation phase must be kept by the
system. If serializablity is not violated the transaction is committed
and the database is updated from the local copies otherwise the
transaction is aborted and then restarted later.

There are three phases:

l. Read phase: During the phase, the system executes transaction Ti. It reads the values of
various data items and stores them in variables local to Ti. It performs all write operations on
temporary local variables, without updates of the actual database.

2. Validation phase: Transaction Ti performs a validation test to determine whether it can copy

to the database the temporary local variables that hold the results of write operations without

causing a violation of serializability.

3. Write phase: If transaction Ti succeeds in validation (step2), then the system applies the

actual updates to the database. otherwise, the system rolls back Ti.

To perform the validation test, we need to know when the various phases of transactions Ti took

place. We shall, therefore, associate three different timestamps with transaction Ti:

1. Start (Ti), the time when Ti started its execution.

2. Validation (Ti), the time when Ti finished its read phase and started its validation phase.

3. Finish (Ti), the time when Ti finished its write phase.

We determine the serializability order by the timestamp-ordering technique, using the value of the

timestamp Validation (Ti). Thus, the value TS (Ti):Validation (Ti) and, if TS (li) < TS (Tk), then

any produced schedule must be equivalent to a serial schedule in which transaction Ti appears before

tranJaction Tk. The reason we have chosen Validation (Ti), rather than Start (Ti), as the timestamp

of transaction Ti is that we can expect faster response time provided that conflict rates among

transactions are indeed low.

The validation test for ffansaction Tj requires that, for all transactions Ti with TS (Ti) < TS (1i), one

of the following two conditions must hold:

1. Finish (Ti) < Start Oj). Since Ti completes its execution before Ti started, the serializability

order is indeed maintained'

2. The set of data items written by Ti does not intersect with the set of data items read by !, and

Ti completes its write phase before ! starts its validation phase (Start (Ti)<Finish

1fi;.VuiiOution (Tj)). This condition ensures that the writes of Ti and ! do not overlap. Since

the writes of Ti do not affect the read of Tj, and since Tj cannot affect the read of Ti, the

serializability order is indeed maintained.

Read (B)
B=B-50
Write (A)
A=A+50

validate
Write (B)
Write (A)

Read (A)
validate
Display (A + B)

,fiii+jti:iifr.$$,lg,,s.--

Consider transactions T1 and T2. Suppose that TS (T1) < TS (T2), then the validation phase
succeeds. Note that the writes to the actual variables are performed only after the validation phase of
T2, thus, T1 reads the old values of B and A, and this schedule is serializable.

The validation scheme automatically guards against cascading rollbacks, since the actual writes take
place only after the transaction issuing the write has committed.

5. Deadlock Handling

A deadlock can occur when twe or more users are waiting for data locked by each other. Deadlocks
prevent some transactions from continuing to work.

A system is in a deadlock state ifthere exists a set oftransactions such that every transaction in the
set is waiting for another transaction in the set.

There exists a set of waiting transactions {T0, T1, --, Tn} such that T0 is waiting for a data item that
is held by T1, and T1 is waiting for a data item that is held by T2, and and Tn-l is waiting for a
data item that is held by Tn, and Tn is waiting for a data item that is held by T0. In such situation no
transaction can proceed.

For example, therc are two transactions T1 and T2 are in deadlock state. Tl is waiting for transaction
T2 and T2 is waitins for transaction T1.

To recover from this problem the system should take some action such as rolling back some
transactions invoked in the deadlock. Rollback of a transaction can be partial, not the complete
transaction. Transaction may be rolled back till the point where it obtained a lock whose release will
resolve the deadlock.

rerrern

read lock (Y)
read (Y)

write (X)

There are two methods to deal with the deadlock problem. The first is the deadlock-prevention

protocol to ensure that the system will never enter a deadlock state. The second is deadlock-

detection and deadlock-recovery scheme. In this system will enter a deadlock state and then try to

recover it using the above scheme. In both methods transaction rollback takes place.

Deadlock prevention is preferred where the probability of deadlock state is relatively high.

Otherwise deadlock detection and recovery are more efficient. Deadlock detection and recovery

require some overheads which is runtime lost of the protocol.

Deadlock Prevention

There are two approaches to deadlock prevention. One approach

ensures that no cyclic waits can occur by ordering the requests for

locks, or requiring all locks to be acquired together. The other

approach is closer to deadlock recovery, and performs transaction

rollback instead of waiting for a lock, whenever the wait could

potentially result in a deadlock.

The simplest scheme under the first approach requires that each

transaction locks all its data items before it begins execution. Either

all are locked in one step or none are locked. There are two main

disadvantages to this Protocol.

1. It is not possible to predict, before the transaction begins, what data items need to be locked.

2. Data item utilization may be very low, sincq many of the data items may be locked but unused

for a long time.

Another scheme for preventing deadlocks is to impose a partial ordering of all data items, and to

require that a transaction lock a dataitem only in the order specified by the partial order-

A sligbt variation of this approach is to use a total order of data items. Once a transaction has locked

a particular item, it cannot request locks on items that precede that item in the ordering.

The second approach for preventing deadlocks is to use preemption and transaction rollbacks. In

preemption, when a transaction T2 requests a lock that is held by transaction T1, the lock granted

toTl may be preempted by rolling back of T1, and granting of the lock to T2' To control the

preemption, we assign a unique timestamp to each transaction. The system uses these timestamps

onlv to decide whether a hansaction should wait or roll back. Locking is still used for conculrency

conkol. If a transaction is rolled back, it retains its old timestamp when restarted. Two different
deadlock-prevention schemes using timestamp have been propoSed:

1. The wait-die scheme is based on a non-preemptive technique. When transaction Ti requests a
data item currently held by 1--. Ti is allowed to wait only if it has a timestamp smaller than that
of Ij (that is, Ti is older than !). Otherwise, Ti is rolled back (dies).

For example the hansactions T0, Tl, T2 have the timestamp 10, 15, 20 respectively. If T0
requests a data item held by T1 then T0 will wait. If T2 requests a data item held by T1 then
T2 will rollback.

2. The wound-wait scheme is based on a preemptive technique and is a counterpart to the wait-
die scheme. When transaction Ti request a data item currently held by Ij, Ti is allowed to wait
only if it has timestamp larger than that of Ij (that is,Ti is younger than 1-). Otherwise, Tj is
rolled back(Tj is wounded by Ti).

The same example,with kansaction T0, Tl, and T2havethe timestamp 10, 15,20 respectively. If T0
requests a data item held by T1 then the data item will be preempted from Tl and T1 will be
rolledback. If T2 requests a data item held by T1 then T2 will wait.

Whenever transactions are rolled back, it is important to ensure that there is no starvation, that is, no
transaction gets rolled back repeatedly and is never allowed to make progress.

Both the wound-wait and the wait-die schemes avoid starvation: At any time, there is a transaction
with the smallest timestamp. This transaction cannot be required to roll back in either scheme. Since
timestamps always increase, and since transactions are not assigned new timestamps when they are
rolled back, a transaction that is rolled back will eventually have the smallest timestamp. Thus, it
will not be rolled back again.

There are differences in the way the two schemes operate:

1. In the wait-die scheme, an order transaction must wait for a younger one to release its data
item. Thus, the order the transaction gets, the more it tends to wait. By contrast, in the would-
wait scheme, an older transaction never waits for a younger transaction.

2. ln the wait-die scheme, if the transaction Ti dies and is rolled back because it requested a data
item held by hansaction fj, then Ti may reissue the same sequence of requests when it is
restarted. If the data item is still held by TJ, then Ij will die again. Thus Ti may die several
times before acquiring the needed data item. Contrast this series of events with what happens
in the wound-wait scheme. Transaction Ti is wounded and rolled back because !
requested a data item that it holds. When Ti is restarted and requests the data item now being
held by lj, Ti waits, thus, there may be fewer rollbacks in the wound-wait scheme.

The major problem with both of these schemes is that unnecessary rollbacks may occur.

Deadlock Detection and Recovery

If a system does not use some protocol that ensures deadlock freedom, then a detection and recovery
scheme must be used. An algorithm that examines the state of system is invoked periodically to
determine whether a deadlock has occurred. If one has, then the system must attempt to recover from
the deadlock. To do so, the system must

1. Maintain information about the current allocation of data items to transactions. as well as anv
outstanding data item requests.

2. Provide an algorithm that uses this information to determine whether the system has entered a
deadlock state.

3. Recover from the deadlock when the detection aleorithm determines that a deadlock exists.

5.2 Deadlock Detection

Deadlocks can be described specifically in terms of a directed graph called a wait-for graph. This
graph consists of a pair G: (V, E) where V is set a vertices and E is a set of edges. The set of vertices
consists of all the transactions in the system. Each element in the set E of edges is an ordered pair
Ti-+Tj. If Ti-+Ij is in E, then there is a directed edge from transaction Ti to Tj, implying that
transactions Ti is waiting for transactions ! to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction !, then the edge Ti-+Tj
is inserted in the wait for graph. This edge is removed only when transaction lj is no longer holding
adata item needed by hansaction Ti.

A deadlock exists in the system if and only if the wait for graph contains a cycle. Each transaction
involved in the cycle is said to be deadlocked. To detect deadlocks, the system needs to maintain the
wait for graph and periodically to invoke an algorithm that searches for a cycle in the graph.

For example.' Consider a wait for graph, which depicts the following situation

1. Transaction T0 is waiting for transaction T1 andT2.

2. Transaction T2 is waiting for transaction Tl.
3. Transaction T1 is waitins for transaction T3.

ff(ro) |\-'\zjr
(E'

frEtugdrvdifirDqde

Since the graph has no cycle the system is not in deadlock state.

Suppose now that transaction T3 is requesting an item held by T2. The edge T3--+T2 is added to the
wait for graph, resulting in the new system state in following diagram.

rAh:ttugd"tvtithaqde

This time the graph contains the cycle.

T1 -+T3-+ T2 -+ T1.

Implying that transactions T1, T2 andTl are all deadlocked.

If deadlock occurs frequently then the detection algorithm should be invoked more frequently than
usual. Data items allocated to deadlocked transactions will be unavailable to other transactions until
the deadlock can be broken. In addition the number of cycles in the graph may also grow. ln the
worst case we could invoke the detection algorithm every time a request for allocation could not be
granted immediately.

5.3 Deadlock Recovery

When a detection algorithm determines that a deadlock exists, the
system must recover from the deadlock. The most common solution
is to roll back one or more transactions to break the deadlock. Three
actions need to be taken:

1. Selection of a victim: Given a set of deadlocked transactions,
we must determine which transaction (or hansactions) to roll
back to break the deadlock.

We should roll back those transactions that will incur the minimum cost. Unfortunately, the

term minimum cost is not a precise one. Many factors may determine the cost of rollback,

including:

a. How long the transaction has computed, and how much longer the transaction will
compute before it completes its designated task?

b. How many data items the transaction has used?

c. How many more data items the transaction needs for it to complete?

d. How many transactions will be involved in the rollback?

2. Rollback: Once we have decided that a particular transaction must be rolled back, we must

determine how far this transaction should be rolled back. The simplest solution is a total

rollback. Abort the transaction and then restart it. However it is more effective to roll back the

transaction only as far as necessary to break the deadlock. But this method requires the system

to maintain additional information about the state of all the running transactions.

3. Starvation: ln a system where the selection of victim is based

prifiarily on cost factors, it may happen that the same

transaction is always picked as a victim. As a result, this

transaction never completes its designed task. This situation is

called as starvation. We must ensure that a transaction can be

picked as a victim only a small finite number of times. The

most common solution is to include the number of rollbacks

in the cost factor.

Starvation refers to the use of all resources. As an example a poorly constructed database, poor

concrrrency controls will result in dbms starvation as usage increases. In effect the database

subsystem is STARVING for resources because all available resources are being consumed. As a

result you will see a severe degrade in performance.

Solved Examples

1. The following is a list of events in an interleaved execution if set of transaction T0' T1' T2
with two phase locking protocol.

Lock (A,X)
Lock (B,S)
Lock (A,S)
Lock (C,X)
Lock (D,X)
Lock (D,S)
Lock (C,S)

t1

t2
t3
t4
t5
t6
t7
t8

Construct a wait for graph according to above request. Is there deadlock at any
instance? Justifv.

Solution

First we convert set of instructions in the form of transactions.

To find deadlock we use wait for graph transaction are vertices and waiting for element is edges.

ln the above wait for graph cycle occurs. Transaction T1 is waiting for T0 to unlock C and
transaction T0 is waiting for T1 to unlock D. Hence Deadlock occurs.

2. Following is the list of events in an interleaved execution if set T1, T2rT3, and T4 has
2PL (two phase lock). Is there a deadlock? If yes which transactions are involved in
deadlock.

Solutlon

t1

t2
r3
t4
t5
t6
t7
t8

T1
T2
T3
T4
T1
T2
T3
T4

Lock (A,X)
Lock (C,S)
Lock (A,S)
Lock (C,S)
Lock (B,X)
Lock (C,X)
Lock (D,X)

To find deadlock situation we draw wait for graph. In vertices are transaction's and edges are
transactions waiting for another transaction to release lock.

The above graph does not contain cycle therefore no deadlock occurs.

3. Following is the list of events in an interleaved execution if set T1, T2rT3, and T4 have
2PL (two phase lock). Is there a deadlock? If yes which transaction are involved in
deadlock.

Solution

First we convert set of instructions in the form of transactions.

To find deadlock situation we draw wait for gaph. In vertices are transactions and edges are
transactions waiting for another transaction to release lock.

A graph contains cycle like T1+T4 -+T3+ T1. So deadlock is present.

tl
t2
t3
t4
t't
t2
t3
14

T1
r2
T3
T4
T1
T2
T3
T4

Lock (A,X)
Lock (B,S)
Lock (A,S)
Lock (B,S)
Lock (B,X)
Lock (C,X)
Lock (D,S)

F,,W,W,I,

4. Following is the list of events in an interleaved execution if set T1, T2, T3, and T4
assuming 2PL (two phase lock). Is there a deadlock? If yes which transactions are
involved in deadlock.

Solution
First we convert set of instructions in the form of transactions.

There is no deadlock at any transaction as there is no dependency on two consecutive transactions on
same variable. So there is no wait for variables

assuming 2PL. (two phase lock). Is there a deadlock? If yes which transactions are
involved in deadlock.

ffi(ro, | ,/-">0/
f etfsgr#rvrilhaqde

t1

t2
t3
t4
t5
t6
t7
t8

T1
T2
T3
T4
T1
T2
T3
T4

Lock (A,X)
Lock (B,X)
Lock (C,S)
Lock (A,S)
Lock (C,X)
Lock (A,S)
Lock (D,X)

T1

T2
T3
T4
T1

T2
T3
T4

Lock (A,X)

Lock (B,S)

Lock (A,S)

Lock (B,S)

Lock (B,X)

Lock (C,X)

Lock (D,S)

Lock (D

Solution

First we convert set of instructions in the form of hansactions.

To find deadlock situation we draw wait for graph in
transactions waiting for another fiansactions to release lock.

vertices are transactions and edges are

From this wait for graph a transactions t7 and t8 are involved in a deadlock as both require D in
Shared (S) and Exclusive (X) mode.

Following is the list of events in an interleaved execution if set T1, T2, and T3 with 2PL.

(two phase lock). (Locks are released when transaction commits.) Is there a deadlock? If
yes which transactions are involved in deadlock. Construct wait for graph.

Solutlon

Wait for graph will be as follows.

6.

T1

r2
T3
T1

T2

T3
T1

T2
T3

T1

r2

Lock (A,S)

Lock (B,X)

Lock (A,X)

Lock (C,S)

Lock (A,S)

Lock (D,X)

DrsP(A-C)
Lock (D,S)

Lock(C,X)

COMMIT
Lock (G,S)

W

After COMMIT instruction locks are released. There is no deadlock situation in this wait graph.

Following is the list of events in an interleaved execution of
setT1, Tz, T: and Ta assuming 2pL (Two phase Lock). Is
there a Deadlock? If yes, which transactions are involved
in Deadlock?

T.rrqq. Tr,anC*ctfoni
tr
tz

tg

t4

ts
t6

tz
ta

Tr
Tz
Tg

Ta,

Tr
Tz
Tg

Tt

Lock (8, S)
Lock (A, X)
Lock (C, S)
Lock (8, S)
Lock (A, S)
Lock (C, X)
Lock (A, S)
Lock (C. X)

7.

OH

,t..iTt:"jt.,,1
s_LocK(B)

s_LocK(A)

x_LocK(A)

x_LocK(c)

s_LocK(c)

s_LocK(A)

s_LocK(B)

x LocK/c)

fi,

8. Following is the list of events in an interleaved execution of
sets T1, T2,T3, T4 assuming2PL.Is there a deadlock? If
yes, which transactions are involved in deadlock?

nfiis, TranSnctlon G0116
+
r1

ta

ta

t4

ts
t

tz
tn

Tr
Tz
Tg

Tq

Tr
Tz
Tg

Tt

LOCK(A,X)
LOCK(B,X)
LOCK(C,S)
LOCK(A,S)
LOCK(C,X)
LOCK(A,S)
LOCK(D,X)
LOCK(B,S)

Solution

Wait for graph is drawn as follows for the above situation:

There is no cycle in wait for graph. So deadlock doesn't exist in the above situation.

9. Following is the list of events in an interleaved execution of
set T1,T2,T3 and Ta assuming 2PL. Is there a Deadlock? If
yes, which transactions are involved in deadlock?

,T,imb,,
"Trin$a€U6tlrtr

tz

tg

t4

rc

to

tz
to

Tr
Tz
Tg

Tq
Tr
Tz
Ts
Tt

LOCK(A,X)
LOCK(B,S)
LOCK(A,S)
LOCK(B,S)
LOCK(B,X)
LOCK(C,X)
LOCK(D,X)
LOCK(D,X)

Solution

.T Tz ;T-d :i

x_LocK(A)

x_LocK(c)

x_LocK(B)

s_LocK(A)

s_LocK(c)

x_LocK(D)

s_LocK(A)

S LOCK(B)

x_LocK(A)

x_LocK(B)

s_LocK(B)

x_LocK(c)

s_LocK(A)

x_LocK(D)

s_LocK(B)

X LOCK{D)

Above wait-for-graph does cycle. So deadlock does not exists in the system.not show

|
(B,x)

|

Am,x)t
\7 l(B'x) |

10. Following is the list of events in an interleaved execution of
sets T1,T2,T3 and Tr assuming 2Pl(two phase lock).Is there
a deadlock? If yes which transaction are involved in
deadlock?

tt
tz
t3

t4

ts
t6

It
to

Tr
Tz
Ts
Tq

Tr
Tz
Tg

Ta

Lock (A,X)
Lock (B,S)
Lock (A,S)
Lock (B,S)
Lock (B,X)
Lock (C,X)
Lock (D,S)
Lock (D.X)

Solution

First we will convert the given set of instructions in the form of transaction

To check whether deadlock is in the system or not we will draw wait for graph. Transactions are

represented by vertices and waiting element by edges.

Cycle is present in wait
transaction T1, T3, Ta.

for graph that means deadlock so deadlock is present. It is created by

11. Following is the list of events in an interleaved execution of
set T1 T2, T3 and T4, assuming 2PL (two phase lock). Is
there a deadlock? If yes, which transactions are involved
in deadlock?

Tlme' fransactJoil . CodG:.,

t'r

t2
t3
t4
t5
t6
t7
t8

T1
T2
T3
T4
T1

T2
T3
T4

Lock (A, X)
Lock (C, S)
Lock (A, S)
Lock (C, S)
Lock (8, X)
Lock (C, X)
Lock (D, X)
Lock (D. S)

Solution
From the given table we get,

Since there is no cvcle. there is no deadlock.

12. The following is the list of events in an
execufion of set of transaction T0o T1, T2 with
locking protocol:

interleaved
two phase

ffff.ah3def;ldrri iiiltriil'l*Efilir il

T1
T2
T3
T4
T1
T2
T3
T4

Lock(A, X)
Lock(C, S)
Lock(A, S)
Lock(C, S)
Lock(B, X)
Lock(C, X)
Lock(D, X)
Lock(D, S)

T3)T1

T2)T4

T4)T3

.,Titns'
t'1

t2
t3
t4
t5
t6
t7
t8

TO

T1
TO

T1
T2
TO
T4tl
T2

Lock (A, X)
Lock (8, S)
Lock (A, S)
Lock (C, X)
Lock (D, X)
Lock (D, S)
Lock (C, S)
Lock (8, S)

' Construct a wait for graph according to above request. Is there deadlock at any
instance? Justify.

Solution
From the given transactions, following wait-for graph results:

Since there is no cycle in the graph, no deadlock exists.
13. Following is the list of events in an interleaved execution of

set of transaction Tl, T2, T3 and T4 assuming 2pL. Is
there a deadlock? If yes, which transactions are involved
in Deadlock?

t1 T1 Lock (A. X)
t2 T2 Lock (8. S)
t3 T3 Lock (A. S)
t4 T4 Lock (D. Sl
t5 T1 Lock (8, X)
t6 T2 Lock (C, X)
t7 T3 Lock (D. S)
t8 T4 Lock (C. X)

Solution

lbr graph is drawn as

There is no oyolc in wait for graph. So deadlock doesn't exisi in situation,

14. Following is the list of events in an interleaved execution of
set of transaction TlrT2, T3 and T4 assuming 2pL. Is
there a deadlock? If yes, which transactions are involved
in deadlock?

follows:

f toxll i (cxfl
I (e,sl

I

x)

|to,sf
the above

X LOCK(A)
S LOCK(B)

S LOCK(A)
S LOCK(D)

X LOCK(B)
x LocK(c)

S LOCK(D)
x LocK(c)

ittiilC:fil,i,*.ru r!i;Gb-tlgr,"{:iil

tl T1 Lock (A.Xl
t2 T2 Lock (A,S)
t3 T3 Lock (A.S)
t4 T1 Lock (B.S)
t5 T2 Lock (B.X)
t6 T1 Lock (C.X)
t7 T2 Lock (D.S)

t8 T3 Lock (D.X)
Solution

Waitfor graph is drawn asfollows:

fGxn

ilD,sl
Cycle is present in wait for
It is created by transactions

graph that means deadlock is presen
T1, T3, T4.

tcxtl

l-G,s) I
t.

WPU ouestions
Define Deadlock.

Define: i. upgrading
Define: i. W-timestamp
Define Growing Phase and Shdnking Phase.

Define Lock. List different types of Lock.
What is deadlock? Explain how deadlock is recovered.

Define Growing Phase.

What is validation based protocol? Explain in detail
conditions for the validation test.

1.

2.

3.

4.

5.

6.

7.

ii. downgrading
ii. R-timestamp

IOct.15.09 - 2Ml

IAor.2015 - 2Ml

lOct.2014- 2Ml

tOct.ZAM- 2Ml

tOct.12.11. Apr.12 * 2M
IOct.l2. 09. Apr.11 - 2M
IOct.2010 - 2Ml

lApr.2010 - 2Ml

IOct.2015 - 4Mlthc

;iiirlil+ll$di,ii..tl},f i,y,f r.,i:l:I,.T1,ll;irlr ;1::::i,1ll.fu L;;;i!i;:;1 ,it''iiijjii..ir+;if;ttliiii:i:.fu

X LOCK(A)
S LOCK(A)

S LOCK(A)
S LOCK(B)

X LOCK(B)
x LocK(c)

S LOCK(D)
X LOCK(D)

ffi
IOct.2015 - 4Ml 2.

IOct.15. Oct.14-4Ml

lOct.2015 - 4Ml

lliriiil'irl?*ii1,Y,ffi,$1

The following is the list of events in an interleaved execution if set
TrTz, T3, and Ta assuming 2 PL. Is there a deadlock? If yes, which
transactions are involved in deadlock?

ilii]r.laittiirftfii{ftlir:ir1:.ir.i?:iii:+i.:i."r' il?llt-i:'ii+r;+.1,):.+

t. Tn Lock (A, X)
12 1z Lock (B, S)
r3 T: Lock (A, S)
t4 Ta Lock (8. S)

Tr Lock (C. S)
Tt Lock (C.)
T Lock (D. S

t^ To Lock (D. X)

How is deadlock detected and how to recover deadlock?
Following is a list of events in an interleaved execution if set T r, Tz,
T3, and Ta assuming 2 PL. Is there a deadlock? If yes, which
transactions are involved in deadlock?

:;ii';ii;,.1':;:.1;i.:iifl S: -!:liiiiriiirli!-Tif.SfiSagtfiltli.',iii:ir.fir':+,rr.i;t:.;'Ltc.ddgtii;riiri:+
tr Tr Lock (A. X
L'

T Lock {8. S
T" Lock (A. S

t" Te Lock (C, S
l- T. Lock (C, X
s 1z Lock (B, X)
\7

Tt3 Lock (D, X
Tn Lock (D. S

Explain Timestamp ordering protocol.
What is deadlock? Explain how deadl

IApr.2015 - 4Ml

IApr.15.Oct.12 - 4Ml

lApr.2015 - 4Ml

3.
4.

5.
6.
1

What is deadlock? Explain how deadlock is recovered.
Following is a list of events in an interleaved execution of set
transactio--ns T," Tr. Tr. and To with two phase lockine Drotocol.

of

deadlock at anv ideadlock at anv instance? Iustifv.
Following is Il list of evqnls ii. an inter.leaved execution of.set of

ing to

mg to

Is there

lApr.2015 - 4Ml 8.
lockin

request. Is there

9.
10.

Explain two phase locking protocol with example.
Following is the list of events in an interleaved execution of set of
transaction Tl,T2, T3 and T4 assuming 2PL. ls there a deadlock? If
yes, which t untu"tiont -. inuolt k?

t'l T1 Lock (A, X
t2 T2 Lock (8, S
t3 T3 Lock (A. S
t4 T4 Lock
t5 T1 Lock (8, X
t6 T2 Lock (C, X
t7 IJ Lock (D, S
t8 r4 Lock (C, X

Following is the list of events in an interleaved execution of set of
transaction Tl,T2, T3 and T4 assuming2PL.Is there a deadlock? If
yes, which trunsu"tiott * ittolte k?

Explain Validation based Protocol.
Following is the list of events in an interleaved execution of setT1,

Tz, Tt and Ta assuming 2PL (Two Phase Lock). Is there a

Deadlock? If ves. which transact involved in Deadlock?10ns are rnvolveo ln
:,li|:'n r., Tr'ifgecflbllt:r' ., : :: ,:'GOdG'

tl
12

ts
aq

ts

t6

tz

Tr
fz
Ts
Tq
Tr
Tz
T3
T^

LocK (b, 5)
Lock (A, X)
Lock (C, S)
Lock (B, S)
Lock (A, S)
Lock (C, X)
Lock (A, S)
Lock (C. X)

What is Deadlock? How to prevent Deadlock.
Following is the list of events in an interleaved execution if
s€tT1,T2,T3 and T4 assuming 2PL. Is there a Deadlock? If yes,
which transactions are involved in deadlock?

lOct.I 4.09.Apr.1 2- 4 Ml

lOct.2014 - 4Ml

lOct.2014 - 4Ml

lOct.2012- 4Ml

1Oct.2012- 4Ml

lApr.12.1A - 4Ml

lAor.2O12-4Ml

11.

t2.
13.

14.
15.

,if,*$e':,L:,T,ffiir 0n;
tr
lz
t3
t4

t5
t6
lt
ta

Tt
Tz
Ts
T+
Tr
Tz
Tg
To

Lock (8, S)
Lock (A, X)
Lock (G, S)
Lock (8, S)
Lock (A, S)
Lock (C, X)
Lock (A, S)
Lock (C. X)

lAor.2012 - 4Ml 16. Following is the list of events in an interleaved execution of sets
T1,T2,T3,Ta assuming 2PL. Is there a deadlock? If yes, which
transactions are involved in deadlock?

rT.ffiier teilsedioh,., :::..Co.d€ :

tr
{
a2

+
r3

.4
t-
+s
a

+

Tr
Tz
T

Tq
Tr
fz
Ts
T.

LOCK(A,X)
LOCK(B,X)
LOCK(C,S)
LOCK(A,S)
LOCK(C,X)
LOCK(A,S)
LOCK(D,X)
LOCK(B.S)tOct.2011 - 4M

lOct.201'l - 4Ml

tApr.11.Oct.10 - 4Ml

lApr.2011,Oct.10 - 4Ml

IAor.2011- 4Ml

t7.
t8.

Explain strict two phase locking protocol with example.
Following is the list of events in an interleaved execution if set
T1,T2,T3 and T+ assuming 2Pl.(two phase lock). Is there a
deadlock? If ves. which transacti involved in deadlock?is. wlllgll [itJl$agLlons arc ln

ffi
tr
12

t3

q

+

t7

Tr
Tz
T3
Tq

Tr
Tz
Ts
Ta

Lock (A,X)
Lock (B,X)
Lock (C,S)
Lock (A,S)
l-ock (C,X)
Lock (A,S)
Lock (D,X)
Lock (B,S)

What is deadlock? Explain how deadlock is detected?
Define terms: i. Upgrading ii. Downgrading

iii. Lock point iv. Starvation
Following is the list of events in an interleaved execution if
SotT1,T2,T3 and T+ assuming 2PL. Is a there a deadlock? If yes
which transactions are involved in deadlock?

:i lfltre il',€o$6i'i
I

+

a
r3

+
r5
+

L7

+

Tr
fz
T

Tr
Tr
Tz
T:
Ta

LOCK(A,X)
LOCK(C,S)
LOCK(A,S)
LOCK(C,S)
LOCK(B,X)
LOCK(C,X)
LOCK(D,X)
LOCK(D,S)

lst of events rn anFollowine is the list of events in an interleaved execution if set
T1,T2, T3-to aslsuming ?ll.]s tlrerg q deadlock ? If yes, which
transactions are involved in deadlock ?

Tir|iei 'Gttde,i
+

t,
+
13

Iq
+
r5

r6

tz
t.

Tr
1z
T3
1q
Tr
Tz
T3
1o

LOCK(A,X)
LOCK(B,X)
LOCK(C,S)
LOCK(A,S)
LOCK(C,X)
LOCK(A,S)
LOCK(D,X)
LOCK{B S)

Qr
ut810t

19.
20.

21.

IAor.2011- 4Ml ,r,,

e6a4fe/, 5

RTCoUERY
$vsrErur

1. lntroduction

A computer system like any other device (mechanical or electrical) is subject to failure from a
variety of reasons: disk crash, power outage, software error, and fire in the machine room or even
damage. In any failure information may be lost. So the database system must take some actions in
advance to ensure two main properties of the transactions like atomicity and durability. A primary
part of a database system is a recovery scheme that can restore the database to the consistent state
that existed before the failure. The recovery scheme also provide high availability i.e. it must
minimize the time for which the database is not usable after a crash.

2. Failure Glassification

There are various fpes of failure that may occur in system each of which needs to be dealt with in a
different manner. The simplest type of failure is one that does not result in the loss of information

in the system. The failures that are more difficult to deal with are
those resulting in a loss of information.

Following are the types offailure:

1. Transaction failure

2. System crash

3. Disk Failure

2.1 Transaction Failure

There are two types of errors that may cause a transaction to fail:

1. Logical error: The transaction can no longer continue with its normal execution because of
some internal condition such as bad input, data not found, overflow or resource limit
exceeded.

2. System error: The system has entered an undesirable state (deadlock) so the transaction
cannot continue with its normal execution. The transaction can be reexecuted at a later time.

2.2 System Grash

There is a hardware malfunction or a bug in the database so{hvare or the operating system that
causes the loss of the content of volatile storage and brings transaction processing to a halt. The
content of nonvolatile storage remains intact and is not comrpted.

The assumption that hardware errors and bugs in the software bring the system to a halt but do not
comrpt the nonvolatile storage contents is known as thefail stop assumption.

2.3 Disk Failure

A disk block loses its content as a result of either a head crash or failure during a data transfer
operation. Copies of the data on other disks or archival backups on tertiary media such as tapes axe

used to recover from the failure.

To determine how the system should recover from failures we need to identify the failure modes of
those devices used for storing data. Then we must consider how these failure modes affect the

contents of the database. We can then propose algorithms to ensure database consistency and

transactions atomicity despite failure. These algorithms are known as recovery algorithm.

1. Actions taken during normal transaction processing to ensure that enough information exists
to allow recovery from failures.

2. Action taken after a failure to recover the database contents to a state that ensures database

consistency, transaction atomicity and durability.

3, Storage Structure

The various data items in the database may be stored and accessed in a number of different storage

media. To understand how to ensure the atomicity and durability properties of a transaction, we will
studv how the data is actuallv stored and what are their access methods.

3. { Storage Types

There are different types of storage media depending on their
relative speed, capacity and resilience to failure they are classified
as:

1. Volatile storage: Information stored in volatile storage does
not usually survive system crashes. This memory access to
volatile storage is extremely fast both because of the speed of
the memory access itself and because it is possible to access
any data item in volatile storage directly. Examples of volatile
storage are main memory and cache memory.

2. Nonvolatile storage: Information stored in nonvolatile storage survives system crashes. Disks
are used for on line storage whereas tapes are used for archival storage. Both these are subject
to failure such as head crash. Nonvolatile storage is slower then volatile storage because disk
and tape devices are electromechanical rather then based entirely on chips, as is volatile
storage. Nonvolatile media are normally used only for backup data. Examples of nonvolatile
storage are disk and magnetic tapes.

3. Stable storage: Information stored in stable storage is never lost. This kind of storage is
practically impossible to obtain.

3,2 Data Access

The database system resides permanently on nonvolatile storage (Disks) and is partitioned into fixed
length storage units called btoctcs. Blocks are the units of data to and from disk and may contain
several data items. We can assume that no data item spans two or more blocks.
Transactions input information from the disk to main memory and then output the information back
onto the disk. The input and output operations are done in block units. The blocks stored on the disk
are called as physical blocks and the blocks stored temporarily in main memory are called as buffer
blocks. The areas of memory where blocks store temporarily are called the disk buffer.
Block movements between disk and main memory are done through the following two operations:
1. Input @): Transfers the physical block B to main memory.

2' Output @): Transfers the buffer block B to the disk and release the appropriate physical
block there.

Following diagram illustrates this scheme.

Main memory Disk

Figure 5.1

Each transaction Ti has a private work area in which copies of all the data items accessed and
updated by Ti are kept. The system creates this work arJa when the transaction is initiated, the
system removes it when the transaction either commits or aborts. Each data item X kept in the work
area of transactions Ti-is denoted by xi. Transactions Ti interacts with tne OataUase system by
transferring data to and from its work to tle system buffer.

The transfers of data takes place using following two operations:

1. Read (X): Assigns the value of data item X to the local variable xi. It executes this operation
as follows:

a. If block Bx on which X resides is not in main memory it issues input (Bx).

b. It assigns to xi the value of X in buffer Block.

2. Write (X): Assigns the value of local variable xi to data item X in the buffer block. It executes
this operation as follows:

, a. If block Bx on which X resides is not in main memory it issues input(Bx).

b. It assigns the value of xi to X in buffer Bx.

The buffer block is written out to the disk by the buffer manager. It needs the memory space for
other purposes. It is not written to the physical block immediately.

When a transaction needs to access a data item X for the first time it must execute read(X). The
system then performs all updates to X on Xi. After the transaction access X for the final time, it must
execute write (X) to reflect the change to X in the database itself.

The output(Bx) operation for the buffer block Bx on which resides does not need to take effect
immediately after write(X) is executed

If the system crashes after the write(X) operation was executed but before output (Bx) was executed
the new value of X is never written to disk and thus is lost.

4. Recovery and Atomicity

Consider the fransaction Ti that transfers '50 from account A to account B. The initial value of A and

B are'1000 and'2000 respectively. Suppose that a system crash has occurred during the execution

of Ti after outpu(BA) has taken place but before oupu(BB) was executed where BA and BB denote

the buffer blocks on which A and B resides. Since the memory contents were lost. We could invoke

two possible recovery procedures:

1. Reexecute: Account A will have value Rs.900 rather then the Rs.950. The svstem enters an
inconsistent state.

2. Do not reexecute: Account A will be Rs.950 but account B will be Rs.2000. The svstem
enters an inconsistent state.

This is because we are not preserving the atomicity property. So to achieve atomicity we must output
the information describing the modification to the stable storage without modifying the database
itself. Here we will assume that a transaction is active at a time.

4.1 Log-Based Recovery

The most widely used structure for recording database modifications
is the log. The log is a sequence of log records, which records all the
update activities in the database. There are several types of log
records, which are written in the system log. An update log record
describes a single database write. It has following fields:

1. Transaction idenffier: This is the unique identifier of the
transaction that perform s the write operation.

2. Data item identifier: Unit identifier of the data item written.
Normally this is the location on disk of the data item.

3. Old value: This is the value of the data item prior to the write.

4. New value: This is the value of the data item after the write.

The other special log records also exist to record different events during transaction processing such
as the start of a transaction and the commit or abort of a transaction.

The various types of log records are represented as :

1. <Ti, start>: It shows that transaction Ti has started.

Example: [start-transactionl: It indicates that transaction T has started execution.

2. <Ti, Xj, Yl, Y2>z Transaction Ti has performed the write operation of data item Xi. Xj has
Vl value before write and will have value V2 after write.

Example [write-itemo T, X, old-value, new-value]:- It indicates that transaction T has
changed the value of database item X from old value to new value.

3. <Ti, commit>: Transaction Ti has committed.

Example: [commit, Tl: It indicates transaction T has completed successfrrlly and the effect
will be committed (stored permanently) to the database.

4. <Ti, aborF: Transaction Ti has aborted.

Example: [abort, T]: It Indicates that transaction T has been aborted.

Whenevbr transaction performs write it is essential that the log record for that write be created before

the database is modified. Once such a log record exists we can undo or redo the changes easily.

The log record is very useful for recovery from system and disk failures. This log must reside in

stable storage. The log contains a complete record of all database activity, so the size of the log will
become very long.

There are two techniques for using the log to ensure the transaction atomicity:

1. Defened Database Modification

2. ImmediateDatabaseModification

4.2 Deferred Database Modification

The deferred database techniques ensures transition atomicity by recording all database

modifications in the log but deferring the execution of all write operations of a transaction until the

transaction partially commits. A transaction is said to be partially committed when the final action of
a transaction is executed. We assume that transactions are executed serially.

When the hansaction partially commits, the information on the log associated with the transaction is

used in executing the deferred writes. If the system crashes before the transaction completes its

execution or if the ffansaction aborts then the information on the log is simply ignored. When

transaction Ti is started then the record <Ti, start> is written in the log. All subsequent write

operations are recorded in the log.

When transaction Ti is partially committed then the last record <Ti, commiF is written in the log.

The system log is used to execute the different writes. If any system crash occurs during this

operation then also there will be no problem as system log is written on the stable storage.

Let us consider an example to understand this

account A to account B.

concept. Let T0 ffansaction transfer Rs. 50 from

Read (A)
A=A-50
Write (A)
Read (B)
B= B+50

Let T1 be a transaction that withdraws Rs.100 from account C.

;iri;i;liilrfifilL;'

Read (C)
C=C-100
Write (C)

Suppose that these two transactions are executed serially in the order T0 followed by T1 and the
value of accounts A, B and C before the executions are Rs.1000, Rs.2000 and Rs.700 respectively.

The portion of the system log for transactions T0 and T1 are.

<T0,start>

<T0,A,950>

<T0,B,2050>

<T0 commit>
<T1,start>

<T1,C,600>

<T1 commit>

Portion of the database log for transactions T0 and T1

There are various orders in which the actual outputs can take place to both the database system and
the log as a result of the execution of T0 and T1. One such order is presented in following table. The
value of A is changed in the database only after the record <T0, A, 950> has been placed in the log.

State of the log and database corresponding to T0 and Tl

Using the log the system can handle any failure that results in the loss of information on volatile
storage. The recoveryprocedure is.

<T0,start>
<T0,A,950>
<T0,8,2050>
<T0 commit>

<T1 ,start>
<T1,C,600>

<T1 commit>

Redo (Ti) Sets the value of all data items updated by hansaction Ti to the new values.

The redo operation must be idempotent i.e. executing it several times must be equivalent to once.

After failure the recovery subsystems consults the log to determine which transactions need to be
redone. Transaction Ti needs to be redone if and only if the log contains both the record <Ti, start)
and the <Ti, commi>. If the system crashes after the transaction completes its execution the
recovery scheme uses the information in the log to restore the system to a previous consistent state
after the transaction had completed.

Let us suppose that the system crashes before the completion of the transaction. So that we can see
how the recovery techniques restore the database to a consistent state.

<TO,start> <T0,start> <T0,start>
<T0,A,950> <T0,A,950> <T0,A,950>
<T0,8,2050> <T0,8,2050> <T0,8,2050>

<T0 commit> <T0 commit>
<T1 start
<T1,C,600> <T1,C,600>

<T1 commit>
b

Figure 5.2: The same log at three different times

Assume that the crash occurs after the log record write @) operation of transaction T0 has been
written in a stable storage. The log at the time of the crash appears infig. 5.2 (a). When the system
comes back up no redo actions need to be taken since no commit record appears in the log. The
values of accounts A and B remain Rs.1000 and Rs.2000 respectively. The log records of the
incomplete transaction T0 can be deleted from the 1og.

Now let us assume the crash comes just after the log records write (C) of transaction T1 has been
written to stable storage. ln this case the 1og at the time of the crash is as infig. 5.2(b).When the
system comes back up the operation redo (T0) is performed since the record <T0, commit) appears
in the log on the disk. After this operation is executed the values of accounts A and B are Rs.950 and
Rs.2050 respectively. The value of account C remains Rs.700. As before the log records of the
incomplete transaction T1 can be deleted from the log.

Finally assume that a crash occurs just after the log record <T I , commi> is written to stable storage.
The log at the time of this crash is u in fig. 5.2 (c). When the system comes back up two commit
records are in the log one for T0 and one for T1. The system must perform operations redo (T0) and
redo (T1) in the order in which their commit records appear in the log. After the system executes
these operations the values of accounts A, B and C are Rs.950, Rs.2050 and Rs.600 respectively.

4.3 lmmediateDatabaseModification

The immediate modification technique allows database modifications to be output to the database

while the transaction is still in the active state. These modifications written by active transactions are

called as uncommitted modifications. ln case of transaction failure the undo operation is performed

on to the database.

Before transaction Ti starts its execution the system writes (Ti, start) to the log. During its execution

any write (X) operation by Ti is preceded by the writing of the appropriate new update record to the

log. When Ti partially commits the system writes the record (Ti, commiP to the log.

Let us consider the banking example. The transaction T0 and T1 executed one after the other in the

order T0 followed by T1. The portion of the log containing the relevant information appears tui

following.

<T0 start>

< T0 , A, 1000,950>

<T0, 8,2000,2050>

<T0 commit>

<T1 start>

<T1 start>

<T1 , C,700,600>

<T1 commit>

Portion of the system log corresponding to T0 and Tl

Using the log the system can handle any failure that does not result

in the loss of information in nonvolatile storage. The recovery

procedure uses two steps.

1. Undo (Ti): restores the value of all data items updated by
transaction Ti to the old values.

2. Redo (Ti): sets the value of all data items updated by

transaction Ti to the new values.

The undo and redo operations must be idempotent to guarantee correct behavior even if a failure

occurs during the recovery process.

iti:iiiili:ijii,ri

After a failure has occurred the recovery scheme determine which transactions need to be redone and

which need to be undone.

1. Transaction Ti needs to be undone if the log contains the record <Ti, starP, but does not

contain the record <Ti, commit>.

2. Transactions Ti needs to be redone if the log contains both record (Ti, starP and the record
(Ti, commit).

Let us consider our banking example. The database system and log is as follows:

State of system log and database corresponding to T0 and Tl

Transaction T0 and T1 executed one after other in the order T0 followed by T1. Suppose that the

system crashes before the completion of the transaction.

We consider three cases. The state of the logs for each of these cases appears infigure below:

<T0,start> <TO,starP <T0,start>

<T0,A,1000,950> <T0,A,1000,950> <T0,A,1000,950>

<T0,8,2000,2050> <T0,B,2000,2050> <T0,8,2000,2050>
<T0, commit> <TO,commit>

<T1 , start
<T1,C,700,600> <T1,C,700,600>

<T1, commit>
(a) (b) (c)

Figure 5.3: The same log shown at three dlfferent tlmes

Let us assume that the crash occurs just after the log record for the step write (B) of ffansaction T0
has been written to stable storage (fig. 5.3(a)). When the system comes back up it finds the record

<T0,start>
<T0,A,1000,950>
<T0,8,2000,2050>
<T0 commit>

<T0 commit>
<T1 ,start>
<T1,C,700,600>

<T1 commit>

A= 950
B=2050

C=600

<TO,star> in the log but no corresponding <T0,commit> record. So transaction T0 must be undone,
hence so undo (T0) is performed. As a result the value of account A, B will be Rs.1000 and Rs. 2000
respectively.

Let us assume in second case where the crash has occurred just after the log record write (C) of
transaction T1 has been written in stable storage ffis s.3(b)).When the systei comes back up, two
recovery actions need to be taken. The operation undo (Ti) must be performed, since the record <Tl
star> appears in the log, but there is no record (Tl,commit>. The operation redo (T0) must be
performed, since the log contains the record <T0 Start > and the record <T0, commi>. At the end of
the entire recovery procedure, the values of accounts A, B and c are Rs.g50, Rs.2050, and Rs.700,
respectively. Note that the undo (T1) operation is performed before the redo (T0). This order is very
important in the recovery procedure.

Finally, let us assume that the crash occurs just after the log record <Tl, commit> has been written
to stable storage (Fis @).When the system comes back up, both T0 and T1 need to be redone since
the records <T0, starF and <T0, commit) appear in the log. After the system performs the recovery
procedures redo (T0) and redo (T1) the values in account A, B and C are Rs.950, Rs.2050 and
Rs.600 respectively.

4.4 Gheckpoints

when a system failure occurs we must see the log to determine those
transactions that need to be redone and those that need to be undone.
we need to search the entire log to determine this information.

There are two problems with this;

l. The search process is time consuming.
2' Most of the transactions have already written their updates into the database. But still we redo

them again and again. There will be no harm in doin! this but the recovery procedure will take
a longer time.

To reduce such kind ofoverhead we use the concept ofcheckpoints.

To use checlqoints in the logfollowtng three steps are used:

L output onto stable storage alr log records currently residing in main memory.
2. Output to the disk all modified buffer blocks.
3. Output onto stable storage a log record <checkpoinF.

Transactions are not allowed to perform any update actions while a checkpoint is in progress. The

recovery procedure can start from the checkpoint record in the system log and not from first record

of the system log.

Consider the transaction Ti that is committed prior to the check point record. Any database

modifications made by Ti must have been written to the database either prior to the checkpoint or as

part of the checkpoint itself. At recovery time there is no need to perform a redo operation on Ti.

After a failure has occurred the recovery scheme examines the log to determine the most recent

transaction Ti that started executing before the most recent checkpoint took place. It can find such a

transaction by searching the log backward from the end of the log until it finds the first <checkpoint)

record and continues to search backward until it finds the next <Ti start) record. This record

identifies a transaction Ti.

Once the system has identified hansaction Ti the redo and undo operations need to be applied to only

hansaction Ti and all fransaction ! that started executing after transaction Ti. The remaining part of
the log can be ignored and erased whenever desired.

For immediate modifications technique the recovery operatiorx are:

1. For all transactions Ti in T that have no (Ti, commit> record in the log, execute undo (Ti)'

2. For all transactions Ti in T such that the record <Ti commit) appears in the log, execute

redo(Ti).

The undo operation does not need to be applied when the deferred modification technique is being

employed.

Consider the set of transaction (T0, T1, ..., T100>. The most recent checkpoint took place during

the execution of transaction T65. So only transactions T65,...T100 need to be considered during the

recovery. Each of them needs to be redone if it has committed otherwise needs to be undone.

5. Recovery with Goncurrent Transactions

Now we consider recovery if only a single transaction at a time is executing. Now we can modify

and extend this with multiple fransactions. The number of concurrent transactions the system has a

single disk buffer and a single 1og. All transactions share the buffer blocks. We allow immediate

modification and permit a buffer block to have data items updated by one or more transactions.

lilliiii+i,lii jii.ilrF',

5.{ Interaction with Goncurrency controt

The recovery scheme depends on the conoulrency control scheme that is used. To roll back a failed
transaction we must rindo the updates performed by the transaction. For example: Suppose that a
transaction T0 has to be rolled and a data item X that was updated by T0 has to be restored to its old
value. Using the log based schemes for recovery we restore the value by using the undo information
in a log record. Suppose now that a second transaction T1 has performed yet another update on X
before Tl is rolled back.

Therefore we require that if fansaction T has updated a data item x no other transaction may update
the same data item until T has committed or rolled back. This can be achieved by using strict two
phase locking.

5.2 Transaction Rollback

Transactions can be aborted due to any failure. To restart, the aborted transaction is called as
rollback' Rollback restores the state of the database to the last commit point. This command also
releases the locks if any hold by the current transaction. The command used in SeL for this is
simply: RoLLBACK;

We roll back a failed transaction Ti by using the log. The system
scans the log backward for every log record of the form <Ti, Xj, Vl,
v2> found in the log the system restores the data item Xj to its old
value V1. Scanning of the log terminates when the 1og record <Ti
starF is found.

If a strict two phase locking is used for concurrency conhol locks held by a transaction t may be
released only after the transaction has been rolled back. Once transaction T has updated a data item
no other transaction could have updated the same data item.

5.3 Restart Recovery

When the system recovers from a crash it constructs two lists. The undo-list consists of tansaction to
be undone and the redo-list consists of transactions to be redone.

The system constructs the two lists as follows. Initially they are both empty. The system scans the

log backward examining each record until if finds the first <checkpoint> record.

1. For each record found by the form <Ti commi> it adds Ti to redo list.

2. For each record found of the form <Ti starP if Ti is not in redo list then it adds Ti to undo list.

When the system has examined all the appropriate log records it checks the list L in the checkpoint

record. For each transaction Ti in L if Ti in not in redo list then it adds Ti to the undo list.

After the redoJist and undo-list are constructed the recovery proceeds asfollows:

i. The system rescans the log from the most recent record backward and performs an undo for

each log record that belongs to transaction Ti on the undo list. Log records oftransaction on

the redolist are ignored in this phase. The scan stops when the <Ti starP records have been

found for every transaction Ti in the undo list.

2. The system locates the mo3t recent <checkpoint I;' record on the log. This step may involve

scanning the log forward if the checkpoint record was passed in step l.

3. The system scans the log forward from the most recent <checkpoint L> record and performs

redo for each log record that belongs on a transaction Ti that is on the redolist. It ignores log

records oftransaction on the undo list in this phase.

After the system has undone all transactions on the undo list it redoes those transactions on the redo-

list. It is important in this case to process the log forward. When the recovery process has completed

transaction-processing resumes.

6. Remote Backup Systems

Traditional transaction processing systems are centralized or client-server systems. Such systems are

at risk to environmental disasters such as fire, flooding or earthquakes. There is need for hansaction

processing system that can function in spite of system failures or environmental disaste' Such

systems mostly provide high availability i.e. the time for which the system is unusable must be

extremely small.

We can achieve high availability by performing transaction processing at one site called the primary

sitz and having a remote backup site where all the data from the primary site are replicated.

The remote backup site is sometimes also called the secondary site. The remote site must be kept

synchronized with the primary site as updates are performed at the primary. We achieve

synchronization by sending all log records from primary site to the remote backup site. The remote

backup site must be physically separated from the primary.

iitff,tiiii,liiiirl,i:iil

When the primary site fails the remote backup site takes over processing. First it performs recovery
using its copy of the data from the primary and the log records received from the primary. ln effect
the remote backup site perfornis recovery actions that would have been performed at the primary site
when the latter recovered. Standard recovery algorithms with minor modifications can be used for
recovery at the remote backup site. Once recovery has been performed the remote backup site starts
processing transactions.

The performance of a remote backup system is better than the
performance of a distributed system with two-phase commit.
Following .figur" J.4 shows the architecture of a remote backup
system.

Figure 5.4:.Architecture of a remote backup system

Following are the several issues that must be addressed in designing a remote backup systetn:

1. Detection of failure: As in failure-handling protocols for distributed system, it is important
for the remote backup system to detect when the primary has failed. Failure ofcommunication
lines can fool the remote backup into believing that the primary has failed. To avoid this
problem, we maintain several communication links with independent modes of failure
between the primary and the remote backup. For exampte, ii addition to the network
connection, there may be a separate modem connection over a telephone line, with services
provided by different telecommunication companies. These connections may be backed up via
manual intervention by operators, who can communicate over the telephone system.

2. Transfer of control: When the primary fails, the backup site takes over processing and
becomes the new primary. When the original primary site recovers, it can eithir play thi role
of remoto backup, or take over the role of primary site again. In either case, the old primary
must receive a log of updates carried out by the backup site while the old primary was do*tt.

-

The simplest way of transferring control is for the old primary to receive redo logs from the
old backup site, and to catch up with the updates by applying them locally. fne otC primary
can then act as a remote backup site. If control must be transferred bac(ihe old baciup site
can pretend to have failed, resulting in the old primary taking over.

4.

Time to recover: If the log at the remote backup grows large, recovery will take a long time.
The remote backup site can periodically process the redo log records that it has received, and
can perform a checkpoint, so that earlier parts ofthe log can be deleted. The delay before the
remote backup takes over can be significantly reduced as a result.

A hot-spare configuration can make takeover by the backup site almost instantaneous. In this
configuration, the remote backup site continuously processes redo log records as they arrive,
applytng the updates locally. As soon as the failure of the primary is detected, the backup site
completes recovery by rolling back incomplete transactions; it is then ready to process new
transactions.

Time to commit: To ensure that the updates of a committed transaction are durable, a
transaction must not be declared committed until its log records have reached the backup site.
This delay can result in a longer wait to commit a transaction, and some systems therefore
permit lower degrees of durability.

The degree of durability can be classified as follows:

i. One - safe: A transaction commits as soon as its commit log record is written to stable
storage at the primary site.

The problem with this scheme is that updates of a committed transaction may not have
made it to the backup site, when the backup site takes over processing. So the updates
rnay appear to be lost. When the primary site recovers, the lost updates cannot be
merged in directly since the updates may conflict with later updates performed at the
backup site.

ii' Two- very safe: A transaction commits as soon as its commit log record is written to
stable storage at the primary and the backup site.

The problem with this scheme is that hansaction processing cannot proceed if either the
primary or the backup site is down. So availability is actually less than in the single site
case.

iii. Two-safe: This scheme is the same as two-very-safe if both primary and backup sites
are active. If only the primary is active the transaction is allowed to commit as soon as
its commit log record is written to stable storage at the primary site.

This scheme provides better availability than does two-very-safe while avoiding the
problem of lost transactions faced by the one-safe scheme.

i#

Solved Examples

1. Following are the log entries at the time of system crash?

[start-transaction, T1]

[write-item T1,D,201

[commit,Tl]
Icheckpoint]
[start-transactionrT4l
[write-item,T4rBrl5l
[commit,T4l
[start-tran sactionrT2]

[write-itemrT2rBr2Sl
Istart-transaction,T3]
[write-item,T3,A,30l
[write-item,T2,D,25l< system crash
If deferred update technique is used what wilt be the recovery procedure?

Solutlon

Using defened update recovery technique two lists of transactions are maintained by the system'

Check the committed fransactions since the last check point and list out active transactions while
system crashes.

1. Apply Redo operations to all the write operations of the committed transactions from the log

in order in which they were written in log.

2. Trandaction that are active and did not commit are effectively cancelled and resubmitted

Stepl: Transaction Tl committed before checkpoint so it is stored on secondary storage.

The transaction T4 committed after checkpoint. So redo all operations of fransactions T4.

Step 2: Transaction T2, T3 are active and they are not committed till system crash so

canceVignore transaction T2 and T3.

Gheekpoint System crash TIme for executing tmnsaction

T1

Rocuverylr$ffi

2. Following are the log entries at the time of system crash?

[start-transaction, T1l

[read-item T1, Dl

[write-item,T1,D,20l

[commit,Tl]

Icheckpointl

[start-transaction T2l

[read-item ,T2,Bl

[write-item,T2,B,l2l

[start-transaction, T3]

[write-item,T3,A,20l

Iread-item,T2,Dl

[write-item, T3, Dr25]e system crash

If deferred update technique is used what will be the recovery procedure?

Solution

Using deferred update recovery technique two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Apply Redo operations to all the write operations of the committed transactions from the log
in order in which they were written in log.

2. Transaction that are active and did not commit are effectively cancelled and resubmitted.

Stepl: Transaction T1 committed before checkpoint so no need to redo transactions.

Step 2: Transaction 72, T3 are active and they are not committed till system crash so
cancel/ignore transaction T2 and T3.

System crash Time for executlng transactionCheckpoint

3. Following are the log entries at the time of system crash?

[start-transaction, Tll
[write-item T1,A,5l

Icommit,Tll
[start-transaction,T2l

[write-item,T2,B,10l

[write-item,T2,D,15l

[commitT2l
Icheckpointl

[start-transaction, T3l

[write-item,T3,B,20]

IStart-transaction, T4l

[write-item, T4, C, 10le system crash

If deferred update technique is used what will be the recoyery procedure?

Solution

Using defened update recovefy technique two lists of transactions are maintained by the System.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Apply Redo operations to all the write operations of the committed hansactions from the log
in order in which they were written in log.

2. Transaction that are active and did not commit are effectively cancelled and resubmitted

Stepl: Transaction Tl, T2 committed before checkpoint so no need to consider transaction
Tl and T2.

Step 2: Transactions T3, T4 arc active and they are not committed till system crash so

cancel/ignore hansaction T3 and T4.

Gheckpoint System crash Time for executing transaction

4. Following are the log entries at the time of system crash?

[start-transaction, T1]

[read-item Tl,Dl
[write-item,Tl,DFl
IcommitrTl]
Icheckpointl

I start-transaction,T2 |

Iread-item,T2,Bl

[write-item rT2,B,l2l

Istart-transaction,T3]

[write-item,T3,A,20l

[write-item,T2,Dl
[write-item, T1, D,201€ system crash

If immediate update with checkpoint is used what will be the recovery procedure
Solution

Using immediate update method two lists of hansactions are maintained by the system.

Check the committed ffansactions since the last check point and list out active transactions while
system crash.

1. Undo all the write-item operations of the active transactions from the log using the undo
procedure.

2. Redo the write-item operations of the committed transactions from the log using redo
procedure

Stepl: Transaction T1 committed before checkpoint so no need to consider

transaction T1.

Step 2: Transaction T2,73 are active and they are not committed till system crash so undo all the

operations of transaction T2 and T3.

Gheckpoint System crash Time for executing transaction

ffi
5. Following are the log entries at the time of system crash?

[start-transaction, T1l

[read-item Tl,Al

Iread-item,T1,Dl

[write-item,T1,D,20l

Icommit,Tll

Icheckpointl

Istart-transaction,T2l

Iread-item,T2,Bl

[write-item,T2rB,l2]

Istart-transactionrT3]

[write-item,T3,C,30l

Icommit,T2l

Iread-item,T3,Dl

[write-item, T3, D,25]€ system crash

If immediate update with checkpoint is used what will be the recovery procedure?
Solution

Using immediate update method two lists of transactions are maintained by the system.
Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Undo all the write-item operations of the active transactions from the log using the undo
procedure.

2. Redo the write-item operations of the committed transactions from the 1og using redo
procedure.

Stepl: Transaction Tl committed before checkpoint so no need to consider transaction T1.
Step2: Transaction T2 committed after checkpoint so redo transaction T2. Transaction T3 is active

so undo it.

System crash Time for executing transactionGheckpoint

iiii{iffi

Foltowing are the log entries at the time of system crash?

[start-transaction, T1l

[write-item T1A,5l

Icommit,Tll

Istart-transactionrT2l

[write-item,T2nB'101

[write-item,TZJ,6|

[commit T2l

[checkpointl

Istart-transaction,T3]

[write-item,T3oB'201

Istart-tran saction,T4]

[write'item, T4, C, 101€ sYstem crash

If immediate update with checkpoint is used what will be the recovery procedure?

Solution

Using immediate update method two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while

system crash.

1. Undo all the write-item operations of the active transactions from the log using the undo

procedure.

Z. Redo the write-item operations of the committed transactions from the log using redo

procedure

Stepl: Transaction Tland T2 arc committed before checkpoint so no need to ccinsider

transaction Tland T2'

Step 2: Trarsaction T3 and T4 are active so undo all operations of fransaction T3 and T4.

Checkpoint System crash Time for executing transaction

Following are the log entries at the Ume-isysternEastrt

[start-transacfiono Tl]
[start-transaction, T2J

Iread-item,tl,Al

[write-item,T 2,B rZ S,S 0l

Istart-trans action,T3]

Icommit-transactionrT2l

Istart-Tran saction,T4]

[write-item,Tl oC,l00, 1 1 5]

Icommit-transactionoTl]

[write-item,T3,D,50,60]

Iread-item,T3,El

[write-item,T3,D,60,7Sl

Icommit-transaction,T4l

[abort-transaction, T3]€ system crash

If immediate update with checkpoint is used what will be the recovery procedure?
Solutlon

Using immediate update method two lists of transactions are maintained by the system.

Check the committed transactions since the Iast check point and list out active transactions while
system crash.

l' Undo all the write-item operations of the active tansactions from the log using the undo
procedure.

2' Redo the write-item operations of the committed transactions from the log using redo
procedure

Transaction Tl,T2 and T4 are committed so redo all operations of TL,T2and T4.
Transaction T3 is active so undo ail write operations of transaction T3.

Time for executing transaction

Stepl:
Step2:

System crash

Following are the log entries at the time of system crash?

[start-transaction, Tll
[write-item T1,D,201

[commifTl]

Icheckpoint]

Istart-transaction,T4l

[write-item,T4,B,15l

[write-timerT4,Ao20l

[commit T4]

Istart-transaction,T2]

[write-item,T2rB,25l

Istart-transaction,T3 |

[write-item,T3,A,30l

[write-item,T2rD,25l+ system crash

rf deferred update technique is used what will be the recovery procedure?
Solution

Using deferred update recovery technique two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Apply Redo operations to all the write operations of the committed transactions from the log
in order in which they were written in log.

2. Transaction that are active and did not commit are effectively cancelled and resubmitted
Stepl: Transacfion T1 committed before checkpoint so it is stored on secondary storage. The

transaction T4 committed after checkpoint. So redo all operations of transaciions T4.

Step2: Transaction T2,T3 are active and they are not committed till system crash s so
cancel/ignored hansaction T2 and T3.

System crash Time for executing transactionCheckpoint

Following are the log entries at the time of system crash:

[staruransactiono T1]

[write item, T1, Ar 30l

[Commit, T1]

Icheckpoint]

[start transaction, T3l

[writdtem, T3, C,501

[commit, T3l

[staruransaction, T2]

[writlitem , T2, C, 401

[startJransaction, Ta]

[writdtem, Ta, B' 30]

[writdtem,Tz,D,60 | e' System Crash

If differed update technique with checkpoint is used, what
will be the recovery procedure?

Solution

Deferred update recovery procedure maintains a list of committed transactions since the last check

point and active transaction at time of system crash.

It will REDO all write item operations of committed transactions from the log in order in which they

are written into the log. Active transactions which did not commit are cancelled and resubmitted.

In the above situation, transaction T1 commits before check point so don't consider that transaction.

Transaction T3 must REDO because it is committed after check point. REDO [write-item, T3, C, 50]

are done

Active transactions Tz and Ta has started their execution but they are not committed before system

crashes so both ofthem are cancelled.

Transactlont, execution
system period (t)
crash

,n

I
I

oc
-o
,96.E ruao!ac
xg
IIJ fl

+
c0

start
transaction

10. Following are the log entries at the time of system crash:

[start transaction, T1l

[write_item T1o D,201

[commit T1]

[check pointl
[Start_transaction Ta]

[write-item T4, B, 151

[commit Tal

[start transaction T2]

[write item Tt,B,25]
[Start_transaction T3l

[write item Tr, Ao 301 <- System Crash
If deferred update technique is used, what will be the
recovery procedure?

Solution

Deferred" update recovery procedure maintains list of committed transactions since the last check
point and active transaction at time of system crash.

It will REDO all write item operations of committed transactions from the log in order in which they
are written into the 1og. Active transactions which did not commit are cancelled and resubmitted.

Time for executino
transaction

ln the above situation, transaction T1 commits before check point so don't consider that transaction.
Transaction Ta must REDO because it is committed after check point. REDO fwrite_item T4, B, 15]
are done.

Active transactions T2 and Tr has started their execution but they are not committed before system
crashes so both ofthem are cancelled.

11. Following are log entries at the time system crash:
[start-transaction T1]

[read-item T2,Al

Fffi
[read-item T1,D]

[write-itemrTr]D,201

[commit T1]

[check point]

[start- transaction T2l

[read- item T2,Bl

[write-itemT2,B,l2l
Istart-transaction,T3 |
[write-itemrT3,C,30l

[read-item, T3rD]

[write-item, T3,D,251 e system crash

If deferred update with check point is used, what will be recovery procedure?

Solution

Deferred update recovery techniques maintain two list as follows:
i. The committed transaction T since the last checkpoint (commit list).
ii. Active ffansactions (active list).

Redo all the write item operations of the committed transactions from the log in order in which they
are written into the log.

The transactions that are active and did not commit are effectively cancelled and must be
resubmitted.

Execution of
transaction

bt't\
Start
transaclion Checkpoint System crash

Transaction
execution
perid (t)

In this example, T1 is committed before checlpoint (before time t1), so it is not necessary to consider
this hansaction.

Active transaction Ti and T3 has started their execution but they are not committed before systems
crashes (time t2) so both of them are cancelled.

12. Following are the log entries at the time of system crash.

[Start-transaction, T1l
[Write-item, T1, A, 10,201

[Commit, T1]
[Check pointl
[Start-transaction, T2l
[Write-item, T2, B, 10, Lsl
IStart-transaction,T3 |
[Write-item, Tl, C, 10, 25]

[Commit T2l
[Write-item, T3, D, 10,301 +- system crash
If immediate update with checkpoint is used, what will be the recovery procedure?

Solution
Using immediate update method, two lists of transactions are maintained by the system.
Check the committed transactions since the last check point and list out active transactions while
system crash.
i. Undo all the write item operations of the active transactions from the log using the undo

procedure.
ii. Redo the write_item operations of the committed transactions from the log using redo

procedure.
Step 1: Transaction T1 committed before checkpoint so no need to consider hansaction T1.
Step2 : Transaction T2 committed after checkpoint so redo transactions T2. Transaction T3 is

Checkpoint System crash Time for executing transaction

active so undo it.

PU |luestions

2.

3.

List the fields of update log record.
What is checkpoint?
List different

Explain advantages and disadvantages of the remote backup
system.
Write a note on Transaction Rollback.
Explain immediate database modification with example

IOct.20'15 - 2Ml

lAor.15,Oct.12- 2Ml

1Oct.14.12- 2Ml

lOct2015- 4Ml

IOct.2015 - 4Ml

lOct.li. Aer.12.10 - 4M

tOct.2015 - 4Ml 4.

IApr.15.Oct.12- 4Ml

IApr.15.Oct.11 - 4Ml

lAor.2015 - 4Ml

1Oct.14.11.10.09 - 4Ml
IOet.I 4. 12.Apr.1 0 - 4 Ml

lOct.2014 - 4Ml

5.

6.

8.

9.

10.

The following are the log entries at the time of system crash:

lstart - transaction, T1]

fwrite - item, Tr, A, 100]

lwrite - item, Tr, B, 100]

fcommit, T1]

lcheckpointl
[start - transaction, T3]

fwrite - item, T3, D, 500]
fcommit, T3]

[start - transaction, Ta]

fwrite - item, T4, E,400]
lstart - fansaction, T2]

[write - item, T2, C, 300] +- System crash
If deferred update technique with checkpoint is used what will
be recovery procedure?
Explain various types of failures that may occur in system.
Explain deferred database modification technique with example.
Following are the log entries at the time of system crash.

fstart * fansaction, T1]

[write - item, Tl, A, 100]

fcommit, T1]

fstart - transaction, T3]

fwrite - item, T3, B,200]
Icheckpoint]
fcommit, T3]

[start - transaction, T2]

fwrite - item, T2, B, 300]
fstart - transaction, Ta]

fwrite - item, T 4, D, 200]
fwrite - item, T2, C, 300] +- System crash

If defened update technique with checkpoint is used, what will
be the recovery procedure?
Explain different types of failures.
Explain Log-based recovery.
Following are the log entries at the time of system crash.

[Start-transaction, T 1]
[Write-item, T1, A, I0,20]
[Commit, T1]
fCheck point]
I Start-transaction, T2]
[Write-item, T2, B, 10, I 5]

I Start-transaction,T3]

11.

12.

[Write-item, Ty C, 10, 25]
[Commit T2]

[Write-item, T3, D, 10, 30] <- system crash
If immediate update with checkpoint is used, what will be the

recovery procedure?
Explain Remote Backup System with proper diagram.
Following are the log entries at the time of system crash:

[start_transaction, T 1]
[write_item, Tl, A,30]
[Commit, T1]

Icheckpoint]
[start_transaction, T3]

[writlitem, T3, C,50]
[commit, T3]

[start_transaction, T2]

[writdtem,T2,C,40f
[start_tansaction, Ta]

[writdtem, Ta, B,30]
[writ1item,Tz,D,60] +- System Crash
If differed update technique with checkpoint is used, what will
be the recovery procedure?

Explain different types of Storage Type.

Following are the log entries at the time of system crash:

[start_transaction, T 1]
[read_item Tr, D]
[write item T1, D, B]
[commit, T1]

Icheckpoint]
fstart_transaction, T2]

[read_item Tz, B]
[writlitem T2, B, 10]

[start_transaction T3]

[writlitem Tz,B,20] eSystem crash
If immediate update with checkpoint technique is used what will
be the recovery procedure?
Define redo and undo operations.

tOct.2012- 4Ml

lOct.2012- 4Ml

14pr.12.10 - 4Ml

tAor.2012- 4Ml

tOct.2011- 4Ml

13.

t4.

15.

IOct.2011- 4Ml

lOct.I1, Apr.11 - 4Ml

IQct.2010 - 4Ml

IQct.2010 - 4Ml

lAor.2010 - 4Ml

14or.2010 - 4Ml

16.

17.

t*"!9l1i,?:rfii{W,S'ffi NHr$ltWlt

Write a note on Storage type.

Following are the log entries at the time of system crash:

[start-transaction, T1]

fWrite-item Tl, D,20]

fcommit T1]

[check point]

fStart-trans action Ta]

[write item T4, B, 15]

[commit Ta]

[start transaction T2]

[write-item Tz,B,25f
I Start-transaction T3]

[write-item T:, A, 30] € System Crash
If deferred update technique is used, what will be the
recovery procedrire?

Explain recovery using deferred update method.

Following are log entries at the time system crash:

[start-transaction T1]
fread-item T2,A]

[read-item T1,D]

fwrite-item,Tl,D,20]
commit T1l
commitTll
check pointl
start- transaction T2]
read- item T2,B]
write-itemT2,B,Izf
start-transaction,T3]
write-item,T3,C,30]

[read-item, T3,D]

t8.

19.

fwrite-item, T3,D,25] <- system crash
If defened update with check point
recovery procedure?

20. Explain log-based recovery.
21. Explain different types of storages.

o,
utst0tl

is used, what will be

Suggestive Readings:

1. Database Management Systems – Rajesh Narang – PHI Learning Pvt Ltd.

2. Database System Concepts by Silberschatz, Korth –Tata McGraw – Hill Publication.

3. An Introduction to Database Systems – Bipin Desai – Galgotia Publication.

4. Database Management System by Raghu Ramkrishnan – Tata McGraw – Hill

Publication. 5. SQL, PL/SQL : The Programming Language Oracle – Ivan Bayross – BPB

Publication.

5. Ramakrishnan, Raghu and Johannes Gehrke. 2003. Database Management Systems.

New Delhi: McGraw-Hill Education.

6. Silberschatz, Abraham, Henry Korth and S. Sudarshan. 2010. Database System

Concepts, 6th Edition. New York: McGraw-Hill.

7. Elmasri, Ramez and Shamkant B. Navathe. 2006. Fundamentals of Database Systems,

5th Edition. Boston: Addison-Wesley.

8. Ritchie, Colin. 2004.Relational Database Principles, 2nd Edition. New Delhi: Cengage

Learning India Pvt. Ltd.

9. Maheshwari, Sharad and Ruchin Jain. 2006. Database Management Systems

Complete Practical Approach. New Delhi: Firewall Media (Imprint of Laxmi

Publications (P) Ltd.

10. Coronel, Carlos M and Peter Rob. 2006. Database Systems: Design, Implementation,

and Management, 7th Edition. US: Cengage Learning.

11. Date, C. J. 2003. An Introduction to Database Systems, 8th Edition. Boston: Addison-

Wesley.

12. Leon, Alexis and Mathews Leon. 2008. Database Management Systems, 1st Edition.

New Delhi: Vikas Publishing House Pvt. Ltd..

13. Vaswani, Vikram. 2003. MySQL: The Complete Reference, 1st Edition. New York:

McGraw Hill Professional

	60320c78908bf348da55b21396da8b5fd11a0fd9dcf4b335512c39264a6ff857.pdf
	3414be6c8e6cecb5669c2d8365abdd37efe398533f6964c834d46139d12ba2c5.pdf
	1ad2e8f6b2b169485d96d2af0911ca2c23b7ed679a2792d002f0e4148dd6216b.pdf
	04c5817f8c0ba4b28192c4e23d5eaa7ac4d6684653b3c4db2f3e91464da5b5e7.pdf
	Microsoft Word - Relational Database Management System BCA SEM-3

