SURESH

GYAN VIHAR

Il V E R S I TY
Accredlted by NAAC with ‘A+’ Grade

Bachelor of Computer Application
(B.C.A)

Relational Database Management System
Semester-111

Author- Mr. Gautam A. Kudale

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra
Assistant Professor, CDOE, SGVU Ms. Shreya Mathur
Assistant Professor, CDOE, SGVU
Ms. Kapila Bishnoi
Assistant Professor, CDOE, SGVU Mr. Ashphaq Ahmad
Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

Syllabus
Relational Database Management System

Learning Objectives

- Understand the basic concepts and the applications of database systems.

- Master the basics of SQL and construct queries using SQL.

- Understand the relational database design principles.

- Familiar with the basic issues of transaction processing and concurrency control.
- Familiar with database storage structures and access techniques.

Unit |

Database System Architecture — Data Abstraction, Data Independence, Data Definitions and Data
Manipulation Languages. Data models — Entity Relationship (ER), Mapping ER Model to
Relational Mode, Network. Relational and Object Oriented Data Models, Integrity Constraints and
Data Manipulation Operations.

Unit 11

Relation Query Languages, Relational Algebra, Tuple and Domain Relational Calculus, SQL and
QBE. Relational Database Design: Domain and Data dependency, Armstrong’s Axioms, Normal
Forms, Dependency Preservation, Lossless design, Comparison of Oracle & DB2.

Unit 111

Query Processing and Optimization: Evaluation of Relational Algebra Expressions, Query
Equivalence, Join strategies, Query Optimization Algorithms.

Unit IV

Storage Strategies: Indices, B-Trees, Hashing, Transaction processing: Recovery and Concurrency
Control, Locking and Timestamp based Schedulers, Mult version and Optimistic Concurrency
Control Schemes. Advanced Topics: Object-Oriented and Object Relational databases. Logical
Databases, Web Databases, Distributed Databases, Data Warehouse and Data Mining.

References

- Database System Concepts by Sudarshan, Korth (McGraw-Hill Education)

- Fundamentals of Database System By Elmasari &Navathe- Pearson Education

- Anintroduction to Database System — Bipin Desai, Galgotia Publications

- Database System: concept, Design & Application by S.K.Singh (Pearson Education)

- Database management system by leon &leon (Vikas publishing House).

- Database Modeling and Design: Logical Design by Toby J. Teorey, Sam S. Lightstone,
and Tom Nadeau, “”, 4thEdition, 2005, Elsevier India Publications, New Delhi

- Fundamentals of Database Management System — Gillenson, Wiley India

1. Introduction to RDBMS 8
1. INFOAUCHION ... e 1-1
2. Introduction to Popular RDBMS Product And their Features.................ccoooooo. 1-1
3. Difference between DBMS and RDBMS............ccoooiivoomo oo 1-5
4 Relationship among Applicaticn Programs and RDBMS............ooooviooo 1-7
2. PL/SQL 86
1. Overview of PLISQL......ccooiiiiiioee e e e 2-1
2. Data TYPESc.oiiiii e 2-3
3. PLISQL BIOCK..........coiiuiiiieioieieet e 2-5
3.1 Operators, Functions, Comparison, Numeric, Character, Date 2-7
3.2 Control Statement 2-9
4 Exceptional HaNAlNgcccoooviiiiiiis oo 2-13
FUNCtions, ProcedUrescooiviiioiceeeeeeeeeeeeeee e 2-16
CUISOT ...t 2-20
6.1 Whatis a Cursor? 2-20
6.2 Typesof Cursors 2-20
6.3 Cursor Declaration 2-23
6.3 Cursor For Loops 2-25
6.4 Parameterized Cursors 2-26
7. Database TrQQers.............cvvioriiieee oo e e 2-27
7.1 Types of Triggers ~ 2-28
8. Oracle PaCkages.............ccovrimriimiioiceet oo oo 2-31
8.1 Components of an Oracle package 2-31
3. Transaction Management 34
1. Transaction CONCEPL.............oouiuiieiseeeeee oo 3-1
2 Transaction Propertieso..o.ov oo 3-2
3. Transaction STAteSccoviviiiieiieeeee oo 3-3
4 Concurrent EXECULION...........c.o... oo 3-4
5 Serializabilityccooiriiiee e 3-9
5.1 Confiict Serializability 3-10
5.2 View Serializability 3-15
RDBMS oje 1572

6. RECOVEIADINIY........ooiiiiiic et et et s eas 3-16
6.1 Recoverable Schedule 3-16
6.2 Cascadless Schedule 3-17
4. Concurrency Control 32
1. ConcUuIrency CONIOl ...t ettt sres 4-1
2. LOCK BaSe PrOtOCOIS ... ittt eeeaeren e e st nemennenas 4-2
2.1 Locks 4-2
2.2 Granting of Locks 4-4
2.3 Two-Phase Locking Protocol 4-4
3. Timestamp-Based ProtoCOIS ..o e 4-8
3.1 Timestamp 4-8
3.2 Timestamp-Ordering Protocol 4-9
3.3 Thomas write rule 4-11
4, Validation-Based ProtoColS ...t 4-12
Deadlock HanalNGo.cov i et er s eebe vt e et etaeeen e e naeens 4-14
5.1 Deadlock Prevention 4-15
5.2 Deadlock Detection 4-17
5.3 Deadlock Recovery 4-18
§. Recovery System 32
1. INETOTUCHION .o ettt 5-1
2. Failure ClassifiCaionooooiiieiie et r s e e e eeeeeeseeen 5-1
2.1 Transaction Failure 5-2
2.2 System Crash 5-2
2.8 Disk Failure 5-2
3. SEOTAGE SITUCTUTEoiiiiii ettt e este e s raeene e eas 5-3
3.1 Storage Types 5-3
3.2 Data Access 5-4
4. Recovery and AOMICILYcoovioiiiir ettt n et ene e 5-5
4.1 Log-Based Recovery 5-6
4.2 Deferred Database Modification 5-7
4.3 Immediate Database Modification 5-10
4.4 Checkpoints 5-12
5. Recovery with Concurrent TransSactionsS ..o 5-13
5.1 Interaction with Concurrency controi 5-14
5.2 Transaction Rollback 5-14
5.3 Restart Recovery 5-14
8. Remote Backup SyStems. ... 5-15
o a I F SRR PFR s
RDBMS oiie

| Chlapten 1
INTRODUCTION TO

1. Introduction

The relational model was first introduced by Ted Codd of IBM research in 1970. The relational
model represents the database as a collection of relations. Informally, each relation resembles a table
of values or to some extent a ‘flat’ file of records. In the formal relational model terminology, a row
is called ‘tuple’, a column header is called an ‘attribute’, and the table is called a ‘relation’. The data
type describing the types of values that can appear in each column is called a ‘domain’.

2. Introduction to Popular RDBMS Product And
their Features
A Relational Database Management System (RDBMS) is a Database Management System (DBMS)

that is based on relational model as introduced by Dr. Edger F.Codd. Most popular commercial and
open source databases currently in use are based on the relational model.

— ®

RDBMS stores data in the form of related tables. RDBMS are powerful because they require few
assumptions about how data is related or how it will be extracted from the database. The samc
database can be viewed in many different ways.

Characteristics/Features of RDBMS |

iv.

vi.

vii.

viii.

ix.

X.

i Data independence: Application programs do not depend on
data. The structure of data is stored separately in the system
catalog from the asses of application programs. Any updates
on data application programs are not identified.

ii. Data integrity: Components like roll back operations,
referential integrity and transaction oriented operations are
designed to ensure integrity constraints.

iii. Fast response rate: Data is centrally located so request of
data can be completed immediately.

Controlled redundancy: According to relational databases data replication, wastage of
storage space, data normalization concepts at higher level redundancy can be removed.
Restricting unauthorized access: RDBMS provides security and data authorization by
creating users at different level.

Multiple user interface: Many database software’s are provided by using several
programming interfaces, query languages, forms, menu driven interfaces.

Concurrency control: This mechanism is used to manage multiple users accessing the same
resources.

Backup and recovery: This facility is used for data recovery from both hardware and
software failures. :

RDBMS suppofts client server architecture.

It provides security, protection, maintenance, reliability and performance on operation of data.

The popular commercial RDBMS for large database includes Oracle, Microsoft Access; Microsoft
SQL Server, Sybase SQL Server and IBM’S DB2.

Products of RDBMS
i ThinkSQL: It is'a cross platform RDBMS.

ii. Microsoft access: It is an entry level DBMS from Microsoft.

iii. MySql
a. It is an open source RDBMS. :
b. Available on many different platforms including

‘windows, linux, UNIX and Mac OS.

7.

Queries: Allow the user to view, change and analyze data in different ways. Queries can also
be stored and used as the source of records for forms, reports and data access pages.

Forms: Can be used for variety of purposes such as create a data entry form to enter data into
a table.

Reports: Allow data in the database to be presented in an effective way in a customized
printed format.

Pages: A (data access) page is a special type of web page designed for viewing and working
with data from the Internet or an Intranet.

Macros: A set of one or more actions that each performs a particular operation, such as
opening a form or printing a report.
Modules: A collection of VBA declarations and procedures those are stored together as a unit.

Microsoft Access can be used as a standalone system on a single PC or as a multi-user system on a
PC network. With the release of Access 2000, there is a choice of two data engines in the product:
the original jet engine and the new Microsoft Data Engine (MSDE), which is compatible with
Microsoft’s back office SQL Server.

Microsoft Access provides four main ways of working with a database that is shared among users on
a network.

1.

2.

File-server solutions: An access database is placed on a network so that multiple users can
share it.

Client-server solutions: An access project (.adp) file can also be created, which can store
forms, reports, macros, and VBA modules locally and can connect to a remote SQL server
database using OLE DB (Object Linking and Embedding for Databases) to display and work
with tables, views, relationships and stored procedures.

Database replication solutions: These allow data or database design changes to be shared
between copies of an access database in different locations without having to redistribute
copies of the entire database.

Web-based database solutions: A browser displays one or more data access pages that
dynamically link to a shared access or SQL server database.

Oracle

The Oracle Corporation is the world’s leading supplier of software for information management and
the world’s second largest independent software company. The user interacts with Oracle and
develops a database using a number of objects.

The main objects in oracle are:

1.
2.

Tables: A table is organized into columns and rows.
Objects: A way to extend Oracle’s relational data type system.

Clusters: A set of tables physically stored together as one table that shares a common column.
Indexes: A structure used to help retrieve data more quickly and efficiently.

Views: Virtual tables.

Synonyms: An alternative name for an object in the database.

Sequences: Generates a unique sequence of numbers in cache.

Functions/Procedures: A set of SQL or PL/SQL statements used together to execute a

particular function.

9. Packages: A collection of procedures, functions, variables and SQL statements that are
grouped together and stored as a single program unit.

10. Triggers: Code stored in the database and invoked—triggered-by-events that occur in the

application.

S A S e

Features of Oracle
1. It is a Relational database management system.

2. It is used in many database applications on several operating
system platform including Unix and Windows.

3. It was the first commercial RDBMS that becomes available on
Linux.

4. It offers technology having comprehensive pre-integrated business applications.
It provides security, protection, maintenance, reliability and performance on operation on data.

6. It provides efficient and fast database recovery.

3. Difference between DBMS and RDBMS

A Database Management System (DBMS) is a collection of programs that enables users to create
and maintain a database. The DBMS is hence a general-purpose software system that facilitates the
processes defining, constructing and manipulating database for various applications.

Defining a database involves specifying the data types, structures and constraints for the data to be
stored in the database. ‘

Constructing the database is the process of storing the data itself on some storage medium that is
controlled by DBMS. '

Manipulating a database includes such functions as querying the database to retrieve specific data,
updating the database to reflect changes in the mini world, and generating reports from the data.

For example, Let us consider the database of university for marinating information concerning
students, courses and grades in a university environment.

A relational database usually contains many relations, with tuples in relations related in various ways. _

A relational database schema S is a set of relation schemas S = {R1, R2,...,.Rm} and a set of

integrity constraints IC.

In relational model all data is logically structured within relations (tables). Each relation has a name
. and is made up of named attributes (columns) of data. Each tuple (row) contains one value per attribute.

The main difference between DBMS and RDBMS is as follows:

It is Database Management | It is Relational Database Management
System. System.

ii. It includes theoretical part | It is the procedural way that includes

how data is stored in table. | SQL syntax for relating tables with one
another and handling the stored data
in table.

fi. |t is feasible for small | It maintains relationships among large
organizations. amount of data.

iv. {1t does not follow | It follows normalization concept.
normalization concept.

V. In DBMS relationship | In RDBMS relationship between two
between two tables or files | tables or files can be specified at the
are ‘ maintained | time of table creation.
programmatically.

vi. | DBMS does not support | Most of the RDBMS supports
Client/Server Architecture. Client/Server Architecture.

vii. | DBMS does not support | Most of the RDBMS supports
Distributed databases. Distributed databases.

viii. | In DBMS there is no In RDBMS there are multiple level of
security of data. security like

i. Logging in at O/S level.

ii. Command level (i.e. at RDBMS
level).

ili. Object level.

ix. | Each table is given an | Many tables are grouped in one
extension in DBMS. database in RDBMS.

X It is single user system. It is multi-user system.

xi. | Naming Conventions
Field Column, Attributes, Data Field
Record Row, Tuple, Entity
File Table, Relation, Entity class

xii. | e.g., FoxPro, IMS. e.g., SQL server, Oracle.

4.

Relationship among Application Programs
and RDBMS

Here we reviewed two representative and very popular Relational Database Management System
(RDBMS) products: Oracle and Microsoft Access. We introduced the typical architecture and
functionality of a high-end product like oracle and a PC-based smaller RDBMS like access. While
we may call oracle a full-fledged RDBMS, we may call Access a data management tool that is
geared for the less sophisticated user. We have also described the main functions of the oracle
system, and reviewed some of the tools available in Oracle for database design and application
development. We have also provided an overview of Microsoft Access, its architecture and reviewed
some additional features and functionality of Access. ’

Application of a RDBMS

i.

ii.

iii.

iv.

Banking: all kinds of transactions: The Banking
Application can look into customer processing, Account
processing, Loan processing, and address all the
functionalities of the Bank.

Airlines: reservations, schedules: Reservation System could be of any type Airlines,
Railway or Bus. The processing remains almost same with few changes in the processing
which includes: customer request processing, ticket reservation, schedule processing and
finally the billing of the customers.

Universities: registration, grades: This system looks into admission processing, short listing,
entrance examination, scheduling interviews, etc. and post admission. It addresses all the
stages of a student processing, from his admission, to examination, attendance, (library
processing) and ultimately the grades.

Sales: customers, products, purchases: This system looks into customer processing as
regards, enquiries, sales orders, delivery with bill and finally billing of the customer, Sales
could either be an extended application of purchases or retail industry. If the purchases are
considered then it involves supplier processing, quotation processing, purchase orders, billing
of suppliers and most important the inventory processing.

Manufacturing: Production, inventory, orders, supply chain.

[Oct.2015 — 2M]
[Oct.14,15.Apr.15,12 — 2M]
[Oct.2014 — 2M)]

[Oct.12, Apr.10 — 2M)]
[Oct.2011 — 2M]

[Apr.2011 - 2M]

[Oct.2010 — 2M]
[Oct.2009 - 2M]

[Oct.15.14.11, Apr.11—4M]

[Apr.2015 - 4M]
[Oct.2012 - 4M]
[Apr.2012 — 4M]
[Oct.2010 — 4M]
[Oct.2009 — 4M]

1. Enlist the RDBMS products.
What is RDBMS? List any two features of RDBMS.
What is RDBMS? List any two products of RDBMS.
| Give any two differences between DBMS and RDBMS.
What are the main objects in MS-Access? |
List four products of RDBMS.
Explain any two distinguishing characteristics of RDBMS.

What is RDBMS? State popular commercial RDBMS
Applications.

© N e v oA W

Differentiate between DBMS and RDBMS with example.
Explain any two popular products of RDBMs.

Explain any two popular products of RDBMS.

Explain any four objects of Oracle.

What are the features of oracle?

Write a note on any two products of RDBMS.

(o
VISION

N I S

1. Overview of PL/SQL

PL/SQL stands for Procedural Language/ Structured Query Language. PL/SQL extends SQL by

adding constructs found in procedural languages, resulting in a structural language that is more

powerful than SQL. The basic unit in PL/SQL is a block. All PL/SQL programs are made up of

~ blocks, which can be nested within each other. Typically, each block performs a logical action in the
program.

Though SQL is the natural language of the DBA, it suffers from various inherent dlsadvantages
when used as a conventional programming language.

1. SQL does not have any procedural capabilities i.e. does not provide the programming
techniques of condition checking, loopmg and branching that is vital for data testing before its

permanent storage.

2. SQL statements are passed to the Oracle engine one at a time. Each time an SQL statement is
executed, a call is made to the engine’s resources. This adds to the traffic on the network,
thereby decreasing the speed of data processing, especially in a multi-user environment.

1. Overview of PL/SQL

PL/SQL stands for Procedural Language/ Structured Query Language. PL/SQL extends SQL by

adding constructs found in procedural languages, resulting in a structural language that is more

powerful than SQL. The basic unit in PL/SQL is a block. All PL/SQL programs are made up of

~ blocks, which can be nested within each other. Typically, each block performs a logical action in the
program. '

Though SQL is the natural language of the DBA, it suffers from various inherent disadvantages,

when used as a conventional programming language.

1. SQL does not have any procedural capabilities i.e. does not provide the programming
techniques of condition checking, looping and branching that is vital for data testing before its
permanent storage.

2. SQL statements are passed to the Oracle engine one at a time. Each time an SQL statement is

executed, a call is made to the engine’s resources. This adds to the traffic on the network,
thereby decreasing the speed of data processing, especially in a multi-user environment.

3. While processing a SQL sentence if an error occurs, the Oracle engine displays its own error
messages. It has no facility for programmed handling of errors that arise during the
manipulation of data. '

Although SQL is a very powerful tool, its set of disadvantages prevents it from being a fully
structured programming language. For a fully structured programming language, Oracle provides
PL/SQL.

As the name suggests, PL/SQL is a superset of SQL. PL/SQL bridges the gap between database
technology and procedural programming language.

Advantages of PL/SQL

1. PL/SQL is a development tool that not only supports SQL
data manipulation but also provides facilities of conditional
checking, branching and looping.

2. PL/SQL sends an entire block of SQL statements to the
Oracle engine all in one go. Communication between the
program block and the Oracle engine reduces considerably,
reducing network traffic.

Since the Oracle engine got the SQL statements as a single
block, it processes this code much faster than if it got the code
one sentence at a time. There is a definite improvement in the
performance time of the Oracle engine. As an entire block of
SQL code is passed to the Oracle engine at one time for
execution, all changes made to the data in the table are done
or undone, in one go.

3. PL/SQL also permits dealing with errors as required, and facilitates displaying user-friendly
messages, when errors are encountered.

C 4, PL/SQL allows declaration and use of variables in blocks of code. These variables can be used
to store intermediate results of a query for later processing, or calculate values and insert them
into an Oracle table later. PL/SQL variables can be used anywhere, either in SQL statements
or in PL/SQL blocks.

5. Via PL/SQL, all stores of calculations can be done quickly and efficiently without the use of
Oracle engine. This considerably improves transaction performance.

6. Applications written in PL/SQL are portable to any computer hardware and operating system,
where Oracle is operational. Hence, PL/SQL code written for a DOS version of Oracle will
run on its Linux/UNIX version, without any modifications at all.

Use of PL/SQL

PL/SQL is used to access relational database from varoius environments which is fully block

structured. *

1. Better performance: PL/SQL processes multiple SQL
: statements simultaneously which reduces network traffic.

2. Error Handling: PL/SQL handles errors and exception
written in PL/SQL program.

Tt supports procedural and object oriented language.
Programmes written in PL/SQL are portable.

It has built in libraries and packages.

AN U

It has transaction processing language.

2. Data Types

Information is transmitted between a PL/SQL program and the
database through variables. Every variable has a specific type
- associated with it.

The variable type can be

1. One of the types used by SQL for database columns.
2. A generic type used in PL/SQL such as NUMBER.
3. Declared to be the same as the type of some database column.

Different Data types in PL/SQL are:

The most commonly used generic | var_name Employee_id number;
type is NUMBER. The default data | number(p,s); Employee_sal

type that can be declared in PL/SQL p = precision number(SB);

is number. Variables of type | g =gcale :
NUMBER can hold either an integer
or a real number.

varchar2 To store variable length character | var_name stud_name varchar2(10);
strings with a maximum length of | varchar2(10);
4000 bytes.

Char To hold fixed length character | var_name stud_name char(10);
strings. char(size);

Date To store date and time. var_name date; | birth_date date;

Boolean For storing TRUE, FALSE or NULL. | var_name stud_attendance boolean;
Note that PL/SQL allows BOOLEAN | boolean:
variables, even though Oracle does
not support BOOLEAN: as a type for
database columns.

Rowed Acts as a unique identifier for every var_name rowid; | emp_rowid rowed,;
row in the database and are stored
internally as fixed length binary

, quantity.

%type and | Used to define variables in PL/SQL %type; bname

% row type | as per data type of columns, rows in | %rowtype; book.bookname%type;
table. : brec book%rowtype;

Number, char, varchar and date data types can have null values.

For example, we might declare:
DECLARE
price NUMBER;
. Bookname VARCHAR (20) ;

NOT NULL: Causes creation of a variable or a constant that cannot be assigned a null value. If an
attempt is made to assign the value NULL to a variable or a constant that has been assigned a NOT
NULL constraint, Oracle senses the exception condition automatically and an internal error is
returned.

The initial value of any variable, regardless of its type, is NULL. We can assign values to variables,
using the ":=" operator. The assignment can occur either immediately after the type of the variable is
declared, or anywhere in the executable portion of the program.

For example

DECLARE
a NUMBER := 3;
BEGIN
a:r= a + 1;
END; '

3.

PL/SQL stands for Procedural Standard Query Language. The
programming language used to access relational database from
various environments is PL/SQL.

PL/SQL is a block-structured language. Each of the basic
programming units that is written to build the application is (or
should be) a logical unit of work. The PL/SQL block allows to
reflect that logical structure in the physical design of the programs.
The block determines both the scope of identifiers (the area of code
in which a reference to the identifier can be resolved) and the way in
which exceptions are handled and propagated. A block may also
contain nested sub-blocks of code, each with its own scope.

There is a common block structure to all the different types of
modules. The block is broken up into four different sections, as

N
[2;]
R T

€

PL/SQL Block

follows:

1.

Header: Relevant for named blocks only, the header determines the way that the named block
or program must be called. The header includes the name, parameter list, and RETURN clause
(for a function only).

Declaration section: The part of the block that declares variables, cursors, and sub-blocks that

are referenced in the execution and exception sections. The declaration section is optional, but
if there is one, it must come before the execution and exception sections. ‘

Execution section: The part of the PL/SQL blocks containing the executable statements, the
code that is executed by the PL/SQL run-time engine. The execution section contains the IF-
THEN-ELSE, LOOPs, assignments, and calls to other PL/SQL blocks. Every block must have
at least one executable statement in the execution section.

Exception section: The section that handles exceptions to normal processing (warnings and
error conditions). This final section is optional. If it is included, control is transferred to this
section when an error is encountered. This section then either handles the error or passes
control to the block that is called the current block. Following diagram shows PL/SQL block
structure for procedures and functions.

Header {(named modules only)

1S

Declaration Section
BEGIN

Execution Section

EXCEPTION

Exception Section

END;

A PL/SQL block has the following structure:

DECLARE

/* Declarative section: memory variables, types,
and constants */

BEGIN

/* Executable section: procedural and SQL
statements go here. */

/* This is the only section of the block that
is required. */

EXCEPTION

/* Exception handling section: error-handling
statements go here. */

END;

Only the executable section is required. The other sections are optional. The only SQL statements
allowed in a PL/SQL program are SELECT, INSERT, UPDATE, DELETE and several other data
manipulation statements plus some transaction control. However, the SELECT statement has a
special form in which a single tuple is placed in variables. Data definition statements like
CREATING, DROPPING, or ALTER is not allowed. The executable section also contains
constructs such as assignments, branches, loops, procedure calls, and triggers. PL/SQL is not case

sensitive. C style comments (/* ... */) may be used.

Comments

A comment can have two forms:

1. The comment line begins with a double hyphen (--). The entire line will be treated as a

comment.
2. The comment line begins with a slash followed by an asterisk (/*) till the occurrence of an

asterisk followed by a slash (*/). All lines within are treated as comment. This form of
specifying comments can be used to span across multiple line.

3.1 Operators, Functions, Comparison, Numeric,
Character, Date

The Character Set

The basic character set includes the following:

i. Uppercase alphabets {A-Z}.

ii. Lowercase alphabets {a-z}.

iti. Numerals {0-9}.

iv. Symbols()+-*/<>=1;:"@%,”#$_\{}?[]

Words used in a PL/SQL block are called Lexical Units. Blank spaces can be freely inserted between
lexical units in a PL/SQL block. The blank spaces have no effect on the PL/SQL block.

The ordinary symbols used in PL/SQL block are
(Y+-*/<>=3%""[]

Compound symbols used in PL/SQL block are

< E oA A = >= = R < >

Literals
A literal is a numeric value or a character string used to represent itself.

i Numeric Literals: These can be either integers or floats. If a float is being represented, then
the integer part must be separated from the float part by a period.

Example: 52, 5.35, 5g8, 45¢-04, .2,2.e7, +48, -9

28)
@
ii. String Literals: These are represented by one or more legal characters and must be enclosed

within single quotes. Writing it twice in a string literal can represent the single quote
character. This is definitely not the same as a double quote.

Example:
'Hello world®, 'Don’t go without saving your work®

iii. = Character Literals: These are string literals consisting of single characters.
Example: '*', ‘a','U.

iv. Logical (Boolean) Literals: These are predetermined constants. The values that can be
- assigned to this data type are: TRUE, FALSE, and NULL.

Constant

In PL/SQL the keyword CONSTANT must be added to the variable name and a value assigned
immediately.

<constantname> CONSTANT <datatype> <size>:=value;

Example:

PI CONSTANT number (5, 2): =3.14;
Operators

i Arithmetic operators

+ Addition * Multiplication
- Subtraction ** Exponentiation

'/ Division 0 Enclosed operation

ii. Logical comparisons

PL/SQL supports the comparison between variables and constants in SQL and PL/SQL
statements. These comparisons, often called Boolean expressions, generally consist of simple
expression separated by

Relational operators <, >, =, >= <= < that can be connected by

Logical operators - AND, OR, NOT.
A Boolean expression will always evaluate to TRUE, FALSE or NULL.

3.2 Control Statement |

The flow of control statement can be classified into the following

categories:

i Conditional Control
ii. Iterative Control

iii. Sequential Control

Conditional Control

PL/SQL allows the use of an IF statement to control the execution of a block of a code. In PL/SQL,
the IF-THEN-ELSEIF-ELSE-END IF construct in code blocks allows specifying certain conditions

under which a specific block of code should be executed.

Syntax
IF <condition> THEN
{Statement_list>
ELSEIF <condition> THEN
{Statement list>
ELSE
{Statement_list>
END IF;

Example: Write a program to find largest of two numbers.

Declare
A number;
B number;
Begin
A:=&a;
‘B:=&b;
I1f (A>B) then
dbms_output.put_line('A is Largest’);

Else
dbms_output.put_line('B is Largest');
End if;

End;

/

At least one of the statements in <loop_body> should be an EXIT statement of the form

EXIT WHEN <condition);
The loop breaks if <condition> is true.

Example: Write a program to print first 10 numbers. (1..10) (Using EXIT WHEN <condition>)

Declare
J number:=0;

Begin
Loop
J:=J+1;
dbms_output.put_line(J);
EXIT when J>=10;
End loop;

End;

/

iterative Control -

Simple loop
Syntax:
Loop

{Statement_list>
END LOOP;

Example:

a. Write a program to print first 10 numbers. (1..10)
Declare
J number:=0;
Begin
Loop
Ji=J+1;
dbms_output.put line(J);
If (J>=10) then
Exit; .
End if;
End loop;
End;
/

b. Create a simple loop such that a message is displayed when a loop exceeds a particular value.
DECLARE
J= number:=0;
BEGIN
LOOP
J:=3+2;
EXIT WHEN J>12;
END LOOP;
dbms_output.put_line('Loop exited as the value of J has reached
[] to char(J));
END;

Output: Loop exited as the value of J has reached 14. PL/SQL procedure successfully
completed.

The WHILE loop

A WHILE loop can be formed with

Syntax:
WHILE <condition>
LOCP
{Statement_ list>
END LOOP;
Examples
a. Write a program to print first 10 numbers. (1..10)(Using while)
Declare '
J number:=0;
Begin
While J<=10 loop
J:=J+1;
dbms_output.put_line(J):
End loop;
End;
/
b. Write a PL/SQL block to calculate the area of a circle for a value of radius varying from 2

to 8. Store the radius and the corresponding values of calculated area in an empty table named
area, consisting of two columns radius and area.

Table Name: area

RADIUS | AREA

Create table area as follows:

Create table area (RADIUS number (5), AREA number (14,2));

DECLARE
pi constant number (4,2):=3.14;
radius number (5);
area number (1i4,2);

BEGIN
radius:=2;
While radius<=8

LOOP
area:=pi*power (radius,2);
insert into area values(radius, area);
radius:=radius+1;

END LOOCP;

END;

Output: Table Name: area

2 7.14
3 28.26
4 50.24
5 785
6 113.04
7 153.86
8 200.96
The FOR loop
A simple FOR loop can be formed with:
Syntax:
FOR <variable> IN [REVERSE] <start>..<end>
LOOP
{statement_list>
END LOOP;

The variable in the For Loop need not be declared. Also the increment value cannot be specified.

The For Loop variable is always incremented by 1.

Examples:

a. Write a program to print first 10 numbers. (1..10)(Using for)
Declare
J number:=10;
Begin

For J in 1..10 loop
dbms_output.put_line(J);
End lcop;
End;
/

b. Write a PL/SQL block of code reversing a number 5687 to 7865.

DECLARE
input_no varchar (5):=%5687";
str_length number (2) ;
reversed_no varchar (5);
BEGIN
Str_length:=length (input_no) ;
For cntr in reverse 1..str_ length
LOoP

reversed no:=reversed_no || substr (input_no,cntr,1);

END LOOP;
dbms_output.put_line('The given number is' I{input_no);

dbms_output.put_line('The reversed number is’ [{reversed_no);

END;
Output:

The given number is 5687
The reversed number is 7865

4. Exceptional Handling

i. predefined
ii. no_data found,

iii. cursor_already open,

iv. dup_val_on_index,
V. storage_error,

vi. program_error,

vii. zero_divide,

viii. invalid_cursor,

ix. login_denied,
X. invalid_number,

Xi. too_many_rows, #
xii. DBMS_output,

xiii. user defined exceptions

Error Handling in PL/SQL

Every PL/SQL block of code encountered by the Oracle engine is accepted as a client. Hence the
Oracle engine will make an attempt to execute every SQL sentence within the PL/SQL block.
However while executing the SQL sentences anything can go wrong and the SQL sentence can fail.

When an SQL sentence fails the Oracle is the first to recognize this as an exception condition. The
Oracle engine immediately tries to handle the exception condition and resolve it. This is done by
raising a built-in exception handler.

An exception handler is nothing but a code block in memory that will attempt to resolve the current
exception condition.
Oracle’s named Exception Handlers

The Oracle engine has a set of pre-defined Oracle error handlers called named exceptions. Theses
error handlers are referenced by their name. The following are some pre-defined named exception
handlers. ‘

o

There are two classes of exception:

i

ii.

Predefined exception: Oracle predefined errors, which are associated with specific error
codes. ‘

User defined exception: Declared by the user and raised when specifically requested within a
block. You can associate a user-defined exception with an error code if you wish.

There are two methods of defining exception by user.

i.

RAISE statement: If you explicitly need to raise an error then RAISE statement is used and
you have to declare an exception variable in declared section.

Example:
Declare
T_sal number (8,2) ;
NEAGTIVE_SALARY EXCEPTION;
Begin
Select sal into t_sal
From emp
Where empname=“Mr .Mahesh” ;
If t_sal < 0 then
Raise NEAGTIVE_SALARY;
Else
Update emp set salary=10000
Where empname='"Mr .Mahesh”;
End if;
Commit;
Exception
When no_data_ found then
dbms_output.put line ('record not found');
When NEAGTIVE_ SALARY then
dbms_output.put_line ('salary is negative');
End;

Here PL/SQL raises user_defined NEAGTIVE_SALARY exception.

RAISE_APPLICATION_ERROR Statement: The RAISE_APPLICATION ERROR takes
two input parameters: the error number and error message. The error number must be
between -20001 to -20999. You can call RAISE_APPLICATION_ERROR from within
procedures, functions, packages and triggers.

Declare
T_sal number (8,2);
Begin
Select sal into t_sal
From emp

Where empname="Mr .Mahesh”;
Update emp set salary=10000
Where empname="Mr.Mahesh”;

Commit;
Exception

When no_data_found then :
RAISE_APPLICATION_ERROR (-20005, Record is not found™) ;

End;

Pre-determined internal PL/SQL exceptions

DUP_VAL_ON_INDEX

Raised when an insert or update attempts to create two rows with
duplicate values in columns constrained by a unique index.

LOGIN_DENIED

Raised when an invalid username/password was used to log onto
Oracle.

NO_DATA_FOUND

Raised when a select statement returns zero row.

PROGRAM_ERROR

Raised when PL/SQL has an internal problem.

TOO_MANY_ROWS

Raised when a select statements returns more than one row to
be mapped into a set of variable.

NOT_LOGGED_ON

Raised when PL/SQL issues an Oracle call without being logged
onto Oracle.

TIMEOUT_ON_RESOURCE

Raised when Oracle has been waiting to access a resource
beyond the user-defined timeout limit.

VALUE_ERROR

Raised when the data type or data size is invalid.

Invalid_number

Raised when the data-type or data size or number is invalid.

Cursor_already_open

Raised when SQL cursor is open.

OTHERS

Stands for all other exceptions not explicitly named.

Displaying user Messages on the VDU screen

Programming tools require a method through which messages can be displayed on the VDU screen.

DBMS_OUTPUT is a package that includes a number of procedures and functions that accumulate
information in a buffer so that it can be retrieved later. These functions can also be used to display

messages.

PUT_LINE puts a piece of information in the package buffer followed by an end-of-line marker. It
can also be used to display message. PUT_LINE expects a single parameter of character data type.
If used to display message, it is the message string.

To display message, the SERVEROUTPUT should be set to ON. SERVEROUTPUT is a SQL*
PLUS environment parameter that displays the information passed as a parameter to the PUT_LINE

function.
Syntax

SET SERVEROUTPUT [ON/OFF]

3. Functions, Procedures

A procedure or function is a logically grouped set of SQL and PL/SQL statements that perform a
specific task. A stored procedure or function is a named PL/SQL code block that has been compiled
and stored one of the Oracle engines system tables.

To make a procedure or function dynamic either of them can be passed parameters before execution.
A procedure or function can then change the way it works depending upon the parameters passed
prior to its execution.

Procedures and functions are stored in the Oracle database. They can be invoked or called by any
PL/SQL block that appears within an application. Before a procedure or function is stored, the
Oracle engine parses and compiles the procedure or function.

The compilation process of procedures and functions does not display the errors. These errors can be
viewed using the select statements;

SELECT * FROM USER_ERRORS;

Procedure and functions are made up of

i A declarative part

iil. An executable part

iii. An optional exception-handling part

Creating Stored Procedures

Syntax:
CREATE OR REPLACE PROCEDURE
[Schema.] <ProcedureName>

(<Argument> {IN, OUT, IN OUT} <Data type>, ..)
{Is, AS}

{Variable declarations>;
{Constant declarations>;

BEGIN

<PL/SQL Subprogram body> ;
EXCEPTION

<Exception PL/SQL block>;
END;

Keywords and parameters

The keywords and parameters used for creating database procedures are explained below:

Recreates the procedure if it already exists. This option is used to change
OR REPLACE the definition of an existing procedure without dropping, recreating and
re-granting object privileges previously granted on it. If a procedure is
‘ redefined the Oracle engine recompiles it.
Schema Is the schema, which contains the procedure. The Oracle engine takes the
default schema to be the current schema, if it is omitted.
Procedure Is the name of the procedure to be created.
A Is the name of an argument to the procedure. Parentheses can be omitted
rgument .
if no arguments are present.
IN Indicates that the parameters will accept a value from the user.
ouT indicates that the parameters will return a value to the user.
Indicates that the parameters will either accept a value from the user or
INOUT
return a value to the user.
7
Data type Is the data type of an argument? it supports any data type supported by
, PL/SQL.
PL/SQL o -
Subprogram body Is the definition of procedure consisting of PL/SQL statements.

Creating a Function

Syntax:
CREATE OR REPLACE FUNCTION {Schema.] <FunctionName>
(<Argument> IN <Data type>, ..)

RETURN <Data type> {IS, AS}

<Variable declarations>;

<Constant declarations>;
BEGIN

<PL/SQL Subprogram body>;
EXCEPTION

<Exception PL/SQL block>;
END;

O

2-18;; o

Keywords and Parameters

The keywords and parameters used for creating database functions are explained below.

Recreates the function if it already exists. This option is used to change
the definition of an existing function without dropping, recreating and

OR REPLACE re-granting object privileges previously granted on it. If a function is
redefined the Oracle engine recompiles it.

Schema Is the schema, which contains the function. The Oracle engine takes the
default schema to be the current schema, if it is omitted.

Function Is the name of the Function to be created.

Arqument Is the name of an argument to the function. Parentheses can be omitted if

9 no arguments are present.
IN Indicates that the parameters will accept a value from the user.

RETURN Data type

Is the data type of the function’s return value. Because every function
must return a value, this clause is required. It supports any data type
supported by PL/SQL.

PL/SQL
Subprogram body

Is the definition of function consisting of PL/SQL statements.

Deleting a stored procedure or function

A procedure or function can be deleted by using the following syntax:

Syntax:

DROP PROCEDURE <ProcedureName> ;

Example:

DROP PROCEDURE proc empsalcheck;

Output:
Procedure dropped

Syntax:

DROP FUNCTION <FunctionName>;

Example:

DROP FUNCTION f empacctcheck;

Output:
Function dropped

£

o

%2 -193 Ereree

Example of Function, Procedure
1. Write a script for the following

Accept the name of an actor from the user and for the specified actor list the details of all the
movies the actor has acted in.

The function name is get movie(), accepts name of the actor from the user and returns details
of all the movies the actor has acted in it. The following are the relations,

create table movie
(
m_no integer,
m_name text,
year integer
)i
create table actor
(
act no integer,
act _name text
)i
create table mov_act
{
m no integer references movie (mv_no) on delete cascade,
act no integer references actor (act_: no)on delete cascade,
rate integer
)i
PL-SQL Block

create or replace procedure get movie (act_name in varchar2)
as ‘
cursor ¢l is select m_name,year
from movie,actor,mov_act
where movie.m no=mov_act.m no
and actor.act_no = mov_act. act_no
and actor.act name = act __name;
c cl%rowtype;

begin
open cl;
loop
fetch c¢1 into c;
exit when cil%notfound;
dbms_output.put_ line (' ***%* ACTOR INFORMATION ****%x 1)
dbms_output.put_ line ("ACTOR NAME:'||act name) ;
dbms_output.put_line ('MOVIE NAME: '| Jc.m_name) ;
dbms_output.put_line ('RELEASE YEAR: "c. “year) ;
end loop;
close cl;
end;

o

6.1 What is a Cursor?

The Oracle engine uses a work area for its internal processing in order to execute an SQL statement.
This work is private to SQL’s operations and is called a cursor.

The data that is stored in the cursor is called as Active Data Set. Conceptually, the size of the
cursor in memory is the size required to hold the number of rows in the Active Data Set. The Oracle
engine determines the actual size, built in memory management capabilities and the amount of RAM
available; Oracle has a predefined area in main memory set aside, within which cursors are opened.
- Hence the cursor’s size will be limited by the size of this pre-defined area.

The values retrieved from a table are held in a cursor opened in memory by the Oracle’s engine. This
data is then transferred to the client machine via network. In order to hold this data, a cursor is
opened at the client end. If the number of rows returned by the Oracle engine is more than the area
available in the cursor opened on the client, the cursor data and the retrieved data are swapped
between the operating system’s swap area and RAM.

6.2 Types of Cursors

There are two types of cursors:

1. Implicit Cursor: Cursors are classified depending on the
circumstances under which they are opened. If the Oracle
engine opened a cursor for its internal processing it is known
as an Implicit Cursor.

2. Explicit Cursor: A cursor can also be opened for processing
data through a PL/SQL block, on demand. Such a user-
defined cursor is known as an Explicit Cursor.

=
4 ”’;«Q{

.2
“‘w.«;

=

A

General cursor attributes

When the Oracle engine creates an implicit or expliéit cursor, cursor control variables are also
created to control the execution of the cursor. There are a set of four system variables, which keeps
track of the current status of a cursor. These cursor variables can be accessed and used in a PL/SQL
code block. ’

Both implicit and explicit cursors have four attributes.

They are described below.

2

i A

Returns TRUE if cursor is open, FALSE
%ISOPEN otherwise ’
%FOUND Returns TRUE if record was fetched successfully,
° FALSE otherwise.
%NOTFOUND Returns TRUE if record was not fetched
> successfully, FALSE otherwise.
Returns number of records processed from the
%ROWCOUNT | “= 7 P

1. Implicit Cursor: The Oracle engine implicitly opens a cursor
on the server to process each SQL statement. Since the
implicit cursor is opened and managed by the Oracle engine
internally, the function of reversing an area in memory,
populating this area with appropriate data, processing that data
in the memory area, releasing the memory area when the
processing is complete is taken care by the Oracle engine.

The resultant data is then passed to the client machine via the
network. A cursor is then opened in memory on the client
machine to hold the rows returned by the Oracle engine. The
number of rows held in the cursor on the client is managed by
the client’s operating system and it’s swap area.

Implicit cursor attributes can be used to access information about the status of the last insert,
update, delete or single-row select statements. This can be done by preceding the implicit
cursor attribute with the cursor name (i.e. SQL). The values of the cursor attributes always
refer to the most recently executed SQL statements, wherever the statements appears. If an
attribute value is to be saved for later use, it must be assigned to a (Boolean) memory variable.

%ISOPEN

The Oracle engine automatically opens and closes the SQL
statements that have been processed in case of implicit cursors.
Thus the SQL%ISOPEN attribute of an implicit cursor cannot be

referenced outside of its SQL statement. As a result,
SQL%ISOPEN always evaluates to FALSE.

%FOUND

Evaluates to TRUE if an insert, update or delete affected one or
more rows, or a single-row SELECT returned one or more rows.
Otherwise it evaluates to FALSE. The syntax for accessing this
attribute is SQL%FOUND.

%NOTFOUND

Is the logical opposite of %FOUND. It evaluates to TRUE, if an
insert, update or delete affected no rows, or a single-row SELECT
returns no rows. Otherwise, it evaluates to FALSE. The syntax for
accessing this attribute is SQL%NOTFOUND.

%ROWCOUNT

Returns number of rows affected by an insert, update or delete or
select into statement. The syntax for accessing this attribute is
SQL%ROWCOUNT.

Explicit Cursor: When individual records in a table have to be processed inside a PL/SQL
block a cursor is used. This cursor will be declared and mapped to an SQL query in the
Declare Section of the PL/SQL block and used within its Executable Section. A cursor thus

created and used is known as an Explicit Cursor.

Explicit cursor attributes are as follows:

%ISOPEN

Evaluates to TRUE, if an explicit cursor is open, or to FALSE, if it is
closed. The syntax for accessing this attribute is
CursorName%ISOPEN,

%FOUND

Evaluates to TRUE if the last fetch succeeded because a row was
available; or to FALSE, if the last fetch failed because no more rows
were available. The syntax for accessing this afttribute is
CursorName%FOUND.

%NOTFOUND

Is the logical opposite of %FOUND. It evaluates to TRUE, if the last
fetch has failed because no more rows were availabie; or to FALSE, if
the last fetch returns a row. The syntax for accessing this attribute is
CursorName %NOTFOUND.

%ROWCOUNT

Returns number of rows fetched from the active set. It is set to zero
when the cursor is opened. The syntax for accessing this attribute is
CursorName%ROWCOUNT.

The steps involved in using an explicit cursor and
manipulating data in its active set are,

Explicit cursor Management

1. Declare a cursor mapped to a SQL select statement that
retrieves data for processing.

ii. Open the cursor.

iii. Fetch data from the cursor one row at a time into memory variables.
iv. Process the data held in the memory variables as required using a loop.
v. Exit from the loop after processing is complete.

vi. Close the cursor.

6.3 Cursor Declaration

A cursor is defined in the declarative part of a PL/SQL block. This is done by naming the cursor and
mapping it to a query. When a cursor is declared, the Oracle engine is informed that a cursor of the
said name needs to be opened. The declaration is only intimation. There is no memory allocation at
this point in time. The three commands used to control the cursor subsequently are open, fetch and

close.

The functionality of open, fetch and close commands.
Initialization of a cursor takes place via the open statement, this:
i Defines a private SQL area named after the cursor name.
ii. Executes a query associated with the cursor.

iii. Retrieves table data and populates the named private SQL area in memory i.e. creates the
Active Data Set.

iv. Sets the cursor row pointer in the Active Data Set to the first record.

A fetch statement then moves the data held in the Active Data Set into memory variables. Data held
in the memory variables can be processed as desired.

A fetch statement is placed inside a loop...end loop construct, which causes the data to be fetched
into the memory variables and processed until all the rows in the Active Data Set are processed. The
fetch loop then exits. The exiting of the fetch loop is user controlled.

After the fetch loop exits, the cursor must be closed with the close statement. This will release the
memory occupied by the cursor and its Active Data Set. A PL/SQL block is necessary to declare a
cursor and create an Active Data Set. The cursor name is used to reference the Active Data Set held
within the cursor.

Syntax.

CURSOR CursorName IS <SELECT statement>;

Opening a Cursor

Opening a cursor executes the query and creates the active set that contains all rows, which meet the
query search criteria. An open statement retrieves record from a database table and places the records
in the cursor (i.e., named private SQL area in memory). A cursor is opened in the server memory.
Syntax:

OPEN CursorName;

Fetching a record from the cursor

The fetch statement retrieves the rows from the active set opened in the server into memory variables
declared in the PL/SQL code block on the client one row at a time. The memory variables are
opened on the client machine. Each time a fetch is executed, the cursor pointer is advanced to the
next row in the Active Data Set.

A standard loop structure (loop-End Loop) is used to fetch records from the cursor into memory
variables one row at a time.

Syntax:
FETCH CursorName INTO Variablel, Varable2, ..

There must be a memory variable for each column value of the Active Data Set. Data types must
match. These variables will be declared in the DECLARE section of the PL/SQL block.
Closing a cursor

The close statement disables the cursor and the active set becomes undefined. This will release the
memory occupied by the cursor and its data set both on the client and on the server.

Syntax:

CLOSE CursorName;

Once a cursor is closed, the reopen statement causes the cursor to be opened.

6.3 Cursor For Loops

Another technique commonly used to control the Loop...End Loop within a PL/SQL block is the
FOR variable IN value construct. This is an example of a machine defined loop exit i.e., when all
the values in the FOR construct are exhausted looping stops.

Syntax:

FOR memory variable IN CursorName

Here, the verb FOR automatically creates the memory variable of the %rowtype. Each record in the
opened cursor becomes a value for the memory variable of the %rowtype.

The FOR verb ensures that a row from the cursor is loaded in the declared memory variable and the
loop executes once. This goes on until all the rows of the cursor have been loaded into the memory
variable. After this loop stops.

A cursor for loop automatically does the following:

1 Implicitly declares its loop index as a %rowtype record.
2. Opens a cursor.
3 Fetches a row from the cursor for each loop iteration.

4. Closes the cursor when all rows have been processed.

A cursor can be closed even when an exit or a goto statement is used to leave the loop prematurely,
or if an exception is raised inside the loop.

Example:

Detlare cursor c_actname is select aname, rate, mvno from actor;
Begin

For y in c_actname

Loop

Dbms_output.put_line(y.mvno ||> '[|y.aname||" '||y.rate);

End loop;

End;

6.4 Parameterized Cursors

Till now, all the cursors that have been declared and used fetched a
pre-determined set of records. Records, which satisfy conditions, set
in the WHERE clause of the SELECT statement mapped to the
cursor. In other words, the criterion on which the Active Data Set is
determined is hard coded and never changes.

Commercial applications required that the query, which, defines the cursor, be generic and the data
that is retrieved from the table be allowed to change according to need.

Oracle recognizes this and permits the creation of parameterized cursors for use. The contents of a
parameterized cursor will constantly change depending upon the value passed to its parameter.

Since the cursor accepts user-defined values into its parameters, thus changing the result set
extracted, it is called as parameterized cursor.

Declaring a Parameterized Cursor

Syntax.:

'CURSOR CursorName (VariableName Datatype) IS <SELECT statement..>
Opening a Parameterized Cursor and Passing Values to the Cursor

Syntax.:

OPEN CursorName(Value/Variable/Expression)

The scope of cursor parameters is local to that cursor, which means that they can be referenced only
within the query declared in the cursor declaration. Each parameter in the declaration must have a
corresponding value in the open statement.

Example of Parameterized Cursor

Here is the example of Parameterized Cursor. To print department wise list of employees, we passed
department number as a parameter to a cursor. Following are the two relations,

Greate table dept
(
d _no integer,
d_name text,
)i
Create table emp

(

emp_no integer,

e _name text,

basic_salary float,

d no integer references dept(d no)on delete cascade

)i

PL-SQL Block

declare
cursor ¢l is select d no from dept;
cursor c2{(dno number) is select d_name,e_name from emp,dept
where dept.d_no=emp.d_no and emp.d_no = dno;
group by d_name,e_name;
c cl%rowtype;
d c2%rowtype;

begin
open cl;
loop
fetch c1 into c¢;
exit when .cl%notfound;
open c2{c.d _no);
loop
fetch c2 into d;
exit when not found;
dbms_output.put_line(d.d_name]| |’ '||d.e_name) ;
end loop;
close c2;
» end loop;
close cl;
end;

7. Database Triggers

Database triggers are database objects created via the SQL* Plus tool on the client and stored on the
server in the Oracle engines system table.

These database objects consists of the following distinct sections
1. A named database event

2. A PL/SQL block that will execute when the event occurs

The Oracle engine allows the definition of procedures that are implicitly executed (i.e. executed by
the Oracle engine itself), when an insert, update or delete is issued against a table from SQL* plus or
through an application. These procedures are called database triggers. The major issues that make
these triggers standalone are that, they are fired implicitly (i.e. internally) by the Oracle engine itself
and not explicitly i.e. called by the user.

7.1 Types of Triggers

Following are the types of the database triggers:

1. Row triggers

ii. Statement triggers

iii. Before triggers

iv. After triggers

V. Combinations triggers
vi. Before statement trigger
vii. Before row trigger

viii. After statement trigger
ix. After row trigger

Syntax for Creating a Trigger

CREATE OR REPLACE TRIGGER [Schema.] <TriggerName>
{BEFORE, AFTER}
{DELETE, INSERT, UPDATE [OF Column,..]}
ON [Schema.] <TableName>
[REFERENCING {OLD AS old,NEW AS new}]
[FOR EACH ROW [WHEN Condition]]
DECLARE
{Variable declarations>;
<Constant declarations>;

BEGIN

<PL/SQL Subprogram body>;
EXCEPTION

<{Exception PL/SQL block>;
END;

Keywords and Parameters

The keywords and the parameters used for creating database triggers are explained below.

OR REPLACE

Recreates the trigger if it already exists. This option can be used to change the
definition of an existing trigger without requiring the user's to drop the trigger
first.

Schema

Is the schema, which contains the trigger. If the schema is omitted, the Oracle
engine creates the trigger in the user's own schema.

Triggername

Is the name of the trigger to be created.

BEFORE

Indicates that the Oracle engine fires the trigger before executmg the triggering
statement.

AFTER

Indicates that the Oracle engine fires the trigger after executing the triggering
statement.

DELETE

Indicates that the Oracle engine fires the trigger whenever a DELETE
statement removes a row from the table.

INSERT

Indicates that the Oracle engine fires the trigger whenever an INSERT
statement adds a row to table.

UPDATE

Indicates that the Oracle engine fires the trigger whenever an UPDATE
statement changes a value in one of the columns specified in the OF clause. If
the OF clause is omitted, the Oracle engine fires the trigger whenever an
UPDATE statement changes a value in any column of the table. ’

ON

Specifies the schema and name of the table, upon which the trigger is to be
created. If schema is omitted, the Oracle engine assumes the table is in the
users own schema. A trigger cannot be created on a table in the schema SYS.

REFERENCING

Specifies correlation names. Correlation names can be used in the PL/SQL
block and WHEN clause of a row trigger to refer specifically to old and new
values of the current row. The default correlation names are OLD and NEW. If
the row trigger is associated with a table named OLD or NEW, this clause can
be used to specify different correlation names to avoid confusion between
table name and the correlation name.

FOR
ROW

EACH

Designates the trigger to be a row trigger. The Oracle engine fires a row
trigger once for each row that is affected by the triggering statement and
meets the optional trigger constraint defined in the WHEN clause. If this clause
is omitted the trigger is a statement trigger.

WHEN

Specifics the trigger restriction. The trigger restriction contains a SQL condition
that must be satisfied for the Oracle engine to fire the trigger. This condition
must contain correlation names and cannot contain a query. Trigger restriction
can be specified only for the row trigger. The Oracie engine evaluates this
condition for each row affected by the triggering statement.

PL/SQL BLOCK

Is the PL/SQL block that the Oracle engine executes when the trigger is fired.

The PL/SQL block cannot contain transaction control SQL statements (COMMIT, ROLLBACK,

and SAVEPOINT)

Deleting a Trigger

Syntax:
DROP TRIGGER <TriggerName> ;
where, TriggerName is the name of the trigger to be dropped.

Example of Trigger

A trigger that will take care of the constraint that movie released after 2005 be entered in the movie
table. Following are the relations,
Create table movie
(,
mv_no integer,
mv_name text,
rel year integer
)
Create table actor
(,
act_no integer,
act_name text
)i
create table ma

(

mv_no integer references movie(mv_no) on delete cascade,
act_no integer references actor (act_no) on delete cascade
)i
PL-SQL Block
create or replace trigger t_mov_2005
before insert or update on movie
for each row

begin
if (:new.relyear < 2005) then
raise_application_error (-2001,' YEAR SHOULD BE > 2005');
end 1if;
.end;

@ _

8. Oracle Packages

A package is an Oracle object, which holds objects within it. Objects
commonly held within a package are procedures, functions,
variables, constants, cursors and exceptions. The tool used to create

a package is SQL* plus. It is a way of creating generic,
encapsulated, re-usable code.
Packages can contain PL/SQL blocks of code, which have been written to perform some process

entirely on their own. These PL/SQL blocks of code do not require any kind of input from other
PL/SQL blocks codes. These are the packages standalone subprograms.

8.1 Components of an Oracle package

A package has usually two components, a specification and a body. A package’s specification
declares the types (variables of the record type), memory variables, constants, exceptions, cursors
and subprograms that are available for use.

Package Specification: The package specification contains:

1. Name of the package.

2. Names of the data types of any arguments.

3. This declaration is local to the database and global to the package.

This means that procedures, functions, variables, constants, cursors and exceptions and other objects

declared in a package are accessible from anywhere in the package. Therefore, all the information a
package needs to execute a stored subprogram is contained in the package specifications itself.

Syntax:

CREATE [OR REPLACE] PACKAGE package_name
{Is/ AS} PL/SQL_package_ spec
Example:

- CREATE OR REPLACE PACKAGE mypack AS
PROCEDURE myproc (p number in number) ;
FUNCTION myfunction (f_number in number);

END mypack;

| |

_f

Advantages of Packages

1. Packages enable the organization of commercial applications into cfficient modules. neh
package is easily understood and the interfaces between packages are simple, clear and well
defined.

2. Packages allow granting privileges efficiently.

A packages public variables and cursors persist for the duration of the session. Therefore all
cursors and procedures that execute in this environment can share them.

4. Packages enable the overloading of procedures and functions when required.

Packages improve performance by loading multiple objects into memory at once. Therefore,
subsequent calls to related subprograms in the package require no I/O.

6. Packages promote code reuse through the use of libraries that contain stored procedures and
functions, thereby reducing redundant coding.

Solved Examples

Following are the solved examples of PL/SQL Block using all types of Control statements,
Function, Cursor, Parameterized cursor, Trigger using all types of trigger etc.

1.

Ccreate table doctor
(
doc_no integer,
doc_name text,
addresstext,
city text,
area text,
)i
create table hosp
(
hosp_nc integer,
hosp_name text,
hosp_city text,
)i
create table doc_hosp
(
doc_no integer references doctor (doc_no) on delete cascade,
hosp_no integer references hosp (hosp_no) on delete cascade,

)i

i. Script to list the names of doctors who visit every hospital located in the city where they
do not live.

PL/SQL BLOCK

declare
cursor cl is select doc_no,doc_name,city
from doctor;
cursor c2{dcity varchar2) is select hosp_no
from hosp:
where hosp city <> dcity;
cursor c3(dno number,hno number) is select doc_no,hosp_no
frem doc_hosp;
where doc_no = dno;
and hosp _no = hno;
c cl%rowtype;)
c2%rowﬁype;
e c3%rowtype;

Q

begin
open cl;
loop
fetch ¢1 into c¢;
exit when cil%notfound;
open c2{c.city);
loop
fetch c2 into d;
exit when c2%notfound;
open c¢3(c.doc_no,d.hosp_no) ;

loop
fetch c3 into e;
exit when c3%notfound;
dbms_output.put_line ('DOCTOR = '||e.doc_name) ;
end loop;
close c3;
end loop;
close c2;
end loop;
close c1;
end;

o

ii. A script of cursor to print the list showing the doctor wise list of hospitals.

PL/SQL BLOCK

declare
cursor cl is select doc_name,hosp name
from doctor,hospital,doc_hos where
doc_hos.doc_no=doctor.doc_no
and doc_hos.hosp_no=hospital.hosp no
group by doc_name,hosp name;
c cl%rowtype;
begin
dbms_output.put_line('DocName]| |’ ' | | HospName) ;
open ci;
loop
fetch cl1 into c;
exit when ci%notfound;
dbms_output.put_line(c.doc_namelf' '] lc.hosp_name) ;
end loop;
close c1;

end;

2,

create table item
(
item no integer,
item name text,
gty integer
)i
create table supp
{
Supp_nointeger,
supp_name text,
addresstext,
city text,
phno integer
)i
create table item_supp
(

item nointeger references item(item no) on delete cascade,

supp_no integer references supp {(supp_no)on delete cascade,
rate integer,
discount integer

)i

i Define a trigger before updation on discount field, if the difference in the old discount
and new discount be entered is > 5% raise an exception and display corresponding
message. '

PL/SOL Block

create or replace trigger t_itemsup
before update of discount of it_sup
for each row

declare
olddisc it_sup.discount%type;
newdisc it_sup.discount%type;
diff number;

begin
olddisc:=:0ld.discount;
newdisc:=:new.discount;
diff:=newdisc-olddisc;
if(diff » olddisc/20) then

doms_output.put_line ('Difference bet new and old discount should be
less than 5%');

end 1if;

end;

ii. Werite a script to list the suppliers who live in same city but supply different set of items.

PL/SQL Block
declare
cursor cl is select supp.supp“no,item.item_no,supp_name,city
from supp,item,item supp
where supp.supp no=item supp.supp_no
and item.item no=item supp.item no;
cursor c2(sno number) is select supp_name,city,item.item no
from supp,item,item. supp

where supp.supp_no<>sno

o

and supp.supp_no=item_ supp.supp_no
and item.item no=item supp.item no;
c cl%rowtype;

d c2%rowtype;

begin

open cl;
loop
fetch ¢1 into ¢;
exit when ci1%notfound;
open c2(c.supp_no) ;
loop
fetch ¢2 into d;
exit when c2%notfound;
if(c.city = d.city) then
if(c.item_no <> d.item no) then

dbms_putput.put_line(c.supp_namelId

end if;
end if;
end loop;
close c¢2;

end loop;
close c1;

end;

.Supp_name| [c.city) ;

3.

Create table dept

(

)

dept_nointeger,
dept_name text,

location text

create table emp

(

)

emp_no integer,

emp_name text,

sex text,

joining date date,

designation text,

salary float,

dept_nointeger references dept (dept_no)

on delete cascade

i. ~ Write a script to list the names of all employees who are men and earning maximum
salary in their department.

PL/SQL Block
declare
cursor ¢l is select dept_no,dept_name from dept;
cursor c2{(dno number) is select emp name from emp,dept
where emp.salary in (select max(salary),emp.emp_ name
from emp,dept where emp.dept no=dno
and dept.dept no=emp.dept_nc and sex='m'
group by dept.dept no) ;
c cl%rowtype:
d c2%rowtype;
begin
open cl;
loop
fetch c1 into c;
exit when ci%$notfound;
open cz(c.dept_no);
loop
fetch c2 into d;
exit when c2%notfound;
dbms_output.put_line(c.dept_name||d.emp_name) ;
end loop;
close c2;
end loop;
close cl;
end;

ii. Write a script to give raise in salary by 5% for all the employees earning less than 10000
and 9% for all employees earning more than or equal to 10000. Also print total numbers
of employees in each case.

PL/SQL Block

declare
cursor c¢2 is select emp _no,salary from emp,dept
where dept.dept_no=emp.dept no;
c c2%rowtype;
cntl number;
cnt2 number;
begin

cntl:=0;
cnt2:=0;
open c2;
loop

fetch c2 into c;
exit when c2%notfound;
if (c.salary < 10000) then
update emp set salary = salary + salary*0.05
where emp.emp no = Cc.emp_no;
cntl:= cnti+l;
end if;
if(c.salary >= 10000) then
update emp set salary = salary + salary * 0.09
where emp.emp _no = c.emp_no;
cnt2:=cnt2+1;

end if;
end loop;
close c2;
dbms_output.put_line('No of employees getting 5% increase= '|]|cntl);
dbms_cutput.put_line('No of employees getting 9% increase= '||cnt2);
end; '
4.

create table empl
(
emp no integer,
emp_name text,
salary float,
comm integer,
mgr_no integer,
dept _no integer references dept(dept_no) con delete cascade
)
create table deptl
(
dept nointeger,
dept_name text,
location text

)

i Write a script to transfer all employees of dept. “C” of location “CB” earning the
commission of 50% of their salary to dept “B”. Also print the total number of employees
of dept. “C” transferred to dept “B”.

PL/SQL Block

declare
cursor ¢l is select dept _no from deptl where dept name='B';
cursor c¢2 1s select emp no,salary,dept name,location,comm from
empl,deptl where deptl.dept_no=empl.dept_ no;
c cl%rowtype;
r c2%rowtype;
cnt number;

begin
cnt:= 0;
open c2;
loop

fetch ¢2 into r;
exit when c2%notfound;
open cl;
loop
fetch c1 into c;
exit when cl%notfound;
if(r.location ='CB' and r.dept_name='C') then
if(r.comm >= (r.salary/2)) then
update empl set dept no = c.dept_no
where empl.emp no = r.emp no;
cnt:=cnt+1;
end if;
end if;
end loop:
close cl;
end loop;
close c2;
dbms_output.put_line('Total nc of emp of dept C transferred to dept CB
are="']|cnt) ; '
end;

ii. Write a script for the following: give the names of all those locations, which has total of
at least 5 depts. in it. Out of which at least 3 depts are spending approximate Rs. 50000/-
as salary of the employee.

PL/SQL Block

declare
cursor cl is select location from empl,deptl
where deptl.dept_no=empl.dept no grcup by location
having count(deptl.dept_no)>=5;
cursor c2(loc varchar2) is select location from empl,deptl
where deptl.location=loc and
deptl.dept no=empl.dept_no group by locaticn

-

having count (deptl.dept no)>= 3 and
sum(salary) >= 50000;
c cl%rowtype;
d c2%rowtype;
begin
open cl;
loop
fetch c1 into c¢;
exit when cl%notfound;
" open c2{(c.location);
loop
fetch c¢2 into d;
exit when c2%notfound;
dbms_output.put line('Location = '] |d.location);
end loop;
close c2;
end loop;
close ci;
end;

5.

create table company
(
c_no integer,
c_name text,
c_addr text,
c_city text,
c_share integer
)i .
create table person
(
p_no integer,
p_name text,
p_addr text,
p city text,
p_phone no integer
)i
create table comp per
{
¢_no integer references company(c_no) on delete cascade,
p_no integer references person(p no) on delete cascade,
no_of shares integer :

)i

—

i. Write a trigger, which gets activated when company tuple is updated. It should delete all
the related tuples when share value of company becomes < Rs.10/-.

PL/SQL Block

create or replace trigger t_comp
after insert or update on company
for each row
declare
¢ company.c_noitype;
v ‘company .c_share%type;
begin
select c_no,c_share into c¢,v from company
where c_share < 10;
delete from company where c_no=c;
delete from comp_per where c_no=c;

end; !

fi. Write a procedure/function, which will take company name as parameter and will find
names of persons who are shareholders of the company.

PL/SQL Block

create or replace procedure get_rec (cname in varchar2)
as
cursor c¢l is select company.c_no,c_name,person.p_no,p_name,c_share
from company,person,comp_per
where comp_per.p_no=person.p_no
and comp_per.c_no=company.c_no;
c cl%rowtype;
begin
open cl;
loop
fetch c¢1 into c¢;
exit when cl%notfound;

if(c.c_name = cname) then

dbms_output.put_line ('COMPANY = '||c.c_name);
dbms_output.put_line ('SHARE HOLDER = '||c.p_name);
end if;

o

end loop;

close c1;

end;

6.

create table dept
(
d_no integer,
d_name text
)i
create table employee
(
e_no integer,
e_name text,
basic_salary float,

d_no integer references dept (d_no) on delete cascade
)i

i Write a script to calculate the salary of each employee as follows
HRA- Rs 2000 if basic _sal <= Rs 8000, Rs 2500 otherwise,
DA -35% of basic_sal
CA -Rs 500 if basic_sal < Rs 6000
Rs 800 if basic_sal > Rs 6000 and <=Rs 9000
Rs 1200 otherwise
PF -11% of basic_sal
PT- Rs 200 if basic_sal <= Rs. 8000
Rs 250 otherwise
Net salary is calculated as basic_sal+ HRA+ DA+ CA- Pf- PT
PL/SQOL Block
declare
cursor ¢l is select * from emp;
hra number;
da number (20,4);
pf number (20,4) ;
ca number;
pt number;
total_sal number;
Cc cl%rowtype;
begin
open cil;
loop
fetch c1 into c;

exit when cl$notfound;
total_sal=0;
if (c.salary <= 8000) then
hra:=2000;
‘pt . :=200;
else
hra:=2500;
pt :=250;
end if;
if (c.salary < 6000) then
ca:=500;
end if;
if(c.salary > 6000) then
if (c.salary <= 9000) then

ca:= 800;
else
ca:= 1200;
end if;
end if;
pf := 0.11 * c.salary;

da := 0.35 * c.salary;

total sal:=c.salary + hra + da + ca - pf - pt;
‘dbms_output.put_line('EMPLOYEE : '||c.e_name) ;
dbms_output.put_line (' HRA= '| |hra) ;
dbms_output.put_line('DA = ']]da);
dbms_output.put_line('CA = ‘] |ca):
dbms_output.put_line('PF = ' lpf)
dbms_output.put_line('PT = “1lpt);
dbms_output.put_line ('TOTAL SALARY IS '|jtotal_sal);
end loop;
close cl;

end;

ii. Write a script using parameterized cursor to print department wise list of employees,
pass department number as a parameter to a cursor.

PL/SQL Block
declare
cursor cl is select d_no from dept; »
cursor c2{dno number) is select d_name,e_name from emp,dept:
where dept.d_no=emp.d_no and emp.d no = dno;
group by d_name,e name;
c cl%rowtype;
d c2%rowtype;

-

begin

open cl;
loop
fetch c¢1 into c¢;
exit when cl%notfound;
open c2{c.d_no);
loop
fetch c2 into d;
exit when not found;
dbms_output.put_line(d.d name||''||d.e name) ;
end loop;
close ¢2;
end loop;
close ci;
end;

7. Accept the deptname and print the no of employees working in that department.

Declare
v_deptname emp.deptname%type;
v_count number;

Begin
v_deptname:=&v_deptname;
select count(*) into v_count
from emp
where deptname=v_deptname;

dbms_output.put_line('No. of employees working in‘ | | v_deptname | |
‘are | [v_count) ;

End;

8. Accept the deptname and print the department no and location of that department.

Declare
v_deptname dept.deptname$type;
v_deptno dept.deptno%type;
v_deptloc dept.deptloc%type;
Begin
" v_deptname:=&v_deptname;
select dno,deptloc into v_deptno, v_deptloc
from dept

where deptname =v_deptname;

dbms~output.put_line('Department no is*| |v_deptno | | tand location
is'] |v_deptloc);
End;

9. Accept empno and Print the name of employee with his salary.
Declare

v_empno emp.empno%type;

v_empname emp.empname$type;

v_empsal emp.empsal%type;
Begin

V_empno: =&vV_empno;

select empname,empsal into v_empname,v_empsal

from emp

where empno=v_empno;

dbms_output.put_line('Name of employee’| |v_empname 'and salary is’|
jv_empsal) ;

‘End;

10. Print the name of employee and salary, having minimum salary.
Declare

v_name emp.empname¥type;

v_sal emp.empsal%type;
Begin

Select empname,empsal into v_name,v_sal

from emp
where sal=(select min(sal) from emp);
dbms_output.put_line(v_name | | 'is having min. salary =" | jv_sal);
End;

11. Accept employee number and print date of joined.
Declare
v_eno emp.eno%type;
v_date_of_joined date;
Begin
V_eno:=&v_eno;
select date of_joined into v_date_of_joined
from emp
where eno=v_eno;
dbms_output.put_line('Date of joined is | |v_date_of_joined);
End;

12. Accept salary and print number of employees having salary greater than or equal to
, accepted salary.
Declare
v_sal emp.sal%type;
v_cnt number;
Begin '
v_sal:=&v_sal;
select count(*) into v_cnt
from emp
where sal>=v_sal;
dbms_output.put_line('No of employees having salary greater than or

equgl to® | | v_sal | | ‘are’ | | v_cnt);
End; ’
13. List all the employees having salary less than 3000 Rs.
Declare

V_ename emp.ename%type;
v_esal emp.esal%type;
Begin ‘
Select ename into v_ename
from emp
where esal<3000;
dbms_output.put_line('The employees having salary less than Rs.3000
are’ | |v_ename); ’
End;

14. Program to find smallest number of two numbers.
Declare

N1 number;

N2 number;

Begin
Nl:=&nl1;
N2 :=&n2;

If(N1<N2) then
Dbms_output.put_line('N1l is smallest®);
Else
Dbms_cutput.put_line ('N2 is smallest’);
End if;
End;

15. Check whether the salary of Gaurav is 35000 or not.
Declare

Gsal emp.sal%type;
Begin

Select sal into Gsal

o

From emp
Where empname= 'Gaurav’;
If (Gsal >35000) then
Dbms_output.put_line('Salary of Gaurav is 35000 °);
Else
‘Dbms_output.put_line('Salary of Gaurav is not 35000) ;
End if;
End;

16. Program for minimum of three numbers.
Declare
a number ;
b number;
¢ number;
Begin
Dbms_output.put_line('Enter value of ar’);
a:= &a;
Dbms_output.put_line('Enter value. of b:%);
b:=&b;
Dbms_output.put_line('Enter value of c:);
cC:=&C;
If (a<b) and (a<c) then
Dbms_output.put_line('a is minimum®) ;
Elseif (b<a) and (b<c) then
Dbms_output.put_line('b is minimum’);
Else
Dbms_output.put_line('c is minimum®) ;
End if;
End;

17. Print the numbers between 1 to 20.

Declare
n number:=0;
Begin
Loop
n=n+1;
dbms_put.put_line(n);
if (n<20) then
exit;
end if;
, end loop;
End;

18. Print all the even numbers 1 to 15

Declare
i number:=0;
Begin
While i<=15 loop
i=i+1;
if (1%2==0)
dbms_ouput.put_line('The even nos are: | | 1i);
End if;
End loop;
End; :

19. Program to find sum of 1* 10 numbers.

Declare
num number:=1;
sum number:=0;
Begin
For num in 1..10 loop
sum=sum+num;
dbms_output.put_line('The sum of 15t 10 nos. is : | | sum);
End loop; ‘
End;

20. Print the sum of odd numbers between 1 to 25.

Declare
num number:=1;
sum number:=0;
Begin
For num in 1 ... 25 loop
If (num%2!=0)
Sum=sum+num;
End 1f;
Dbms_output.put_line ('The sum of odd numbers between 1 to 25 is: > | |
sum) ;
End loop;
End;

21. Accept a no and check it is even or odd.
Declare

n number ;
Begin

R

Dbms_ouput.put_line ('Enter the number: ") ;

n:=&n;
if(n%2==0) then

dbms_output.put_line ('Number is even’) ;

else
doms_output.put_line ('Number is odd”) ;
end if;
end;

22. Accept number and print its square and cube.
Declare
num number ;
Begin
Dbms_ouput.put_line('Enter a number:’);
num: =#

Dbms_ouput.put_line('Square of a number:’ | |num*num);

Dbms_ouput.put_line('Cube of a number : ~ |

End;

| num*num*num) ;

23. Accept a no and find its factorial.

Declare
num number ;

f number:=1;

Begin
Dbms_ouput.put_line('Enter a number:’);
num: =#
while n>0 loop
f:=f*num;
num- - ;
end loop;

dbms_output.put_line('Factorial of number is:'| [f);

end;

24. Accept a string and reverse that string.
Declare

str varchar (30} ;

ch varchar (1) ;

len number;
Begin

str:='&str’;

len:=length(str);

While len>0 lcop
ch:=substr(str, 1 , 1);

Dbms_ouput.put.line('The reverse string is:*}{ |ch);
len=len - 1;

End loop;

End;

25. Accept employee no and check whether it is present in emp table or not.

Declare
v_no emp.eno%type;
V_eno emp.eno%type;
Begin
V_eno:=&v_eno;
Select eno into v_eno
From emp
Where eno=v_eno;
If v _no=v_ eno then
Dbms_ouput.put_line('Employee is present‘);
End if;
When data_not_found then
Dbms_output.put.line('Employee is not present’);
End; :

26. Accept employee name and check whether commission is null or not. If commission is
num raise an exception otherwise display commission.
Declare
v_comm emp.emp%$type;
v_ename emp . ename%type;
chk comm exception;
Begin—
V_ename:=&v_ename;
Select comm into v_comm
From emp
Where ename=v_ename;
If v_comm is Null then
Raise chk_comm;
Else
Dbms_ouput.put_line(v_comm) ;
End if;
Exception;
When data not_found then
Dbms_ouput.put_line('Ename do not present.‘);
When chk _comm then
Dbms_ouput.put_line('Ename is null “);
End; :

27. Accept employee number and prints its details using cursor.
Declare
V_no emp .eno%type;
V_name enmp . ename$type;
V_desig emp.edesg$type;
V_sal emp.esal%type;
Begin
Select ename,edesg ,esal into v_name,V de51g v_sal
From emp;
Where eno=v_no;
If sqgl%found then

Dbms_ouput.put_line('Name:‘|lv_name || 'Designation:’|| v_desig |
| 'salary:"| | v_sal);
Exception;

When data_not_found then
Dbms_output.put_line('Eno do not present.’);
End;

’ 28. Accept a salary and print name, salary and designation of employees having salary less
than accepted salary.

| Declare
| Cursor csr(c_sal emp.salstype) 1s select * from emp
! Where sal<c_sal;
Emp rec csr%type;
V_sal emp.sal%type;
Begin
V_sal =&v_sal;
Dbms_output.put_line('Name Salary Designation®);
For emp_rec in csr(v_sal)
Loop
Dbms_ouput.put_line (emp_rec.name [| '>| lemp_rec.sal | |
lemp_rec.desig);
End loop;
End;

'Y

29. Print the details of employees who belongs to department no 5.

Declare
cursor csr is select empname,empsal,empdesg,dno
From emp
Where dno=5;
V_n emp.empname$type;
V_s emp .empsal&type;
V_des emp.empdesgitype
V_dno emp.dno%type;

O

Begin

Open csr;
Dbms_ouput.put_line('Name designation salary departmentNo');
Loop;
Fetch csr into v_n,v_s,v_dno;
Exit when csr%not found;
Dbms_ouput.put_line(v.n| | '* | |v.des | | ' | | v.s | | ' | fv_dno);
End loop;
End;

30. Print name and salary of employee having designation as clerk and assistant.’

Declare
Cursor ¢ is select empname,empsal
From emp
Where empdesg= 'clerk® and empdesg= 'assistant';
V_n emp.empname$type;
V_s emp.empsal%type;
Begin
Open c;
Dbms_output.put_line('Name salary’);
Loop
Fetch ¢ into v_n,v_s;
Exit when c% not found;

Dbms_ouput.put_line{(v.n | | '> | |v_s);
End loop;
End;

31. To Create/modify a trigger

Create or replace trigger trigger_sal
Before insert on emp
For each row
Begin
If acc.sal<=0 then
Dbms_output.put_line('Salary must be non-negative®) ;-
End if;
End;

32. Passing eno as a parameter to procedure and modifying salary of that employee.

Create or replace procedure emp_proc
(no in number)Is
V_empsal number;

Begin
Select sal into v_empsal

~ '

From emp
Where eno=no;
If v_empsal > 2000 then
Update emp
Set sal=v_empsal*1.75
Where eno=no;
Else
Update emp
Set sal=7000
Where eno=no;
End if;
Exception
When No_Data_Found then

Dbms_output.put_line('Eno do not present’);

End proc;

33. Designation to the calling program.

Create or replace procedure procl

{p_no IN number,p_desg OUT emp .desg%type)

Is
V_desg emp.desg¥type
Begin
Select desg into v_desg
From emp

Where eno=p_no;
P_desg:=v_desg;
Exception)
When No_data_found then
P_desg= 'No’;
End procl:
Declare
F_eno number;
F_desg emp.desg¥type;
Begin
Proci (&f_eno, f_desg);
If £ desg= 'No';

Dbms_output.put_line('Eno do not exists);
Else

Dbms_ouput.put_line('Designation of employee is:” | |f desg);
End if;
End;

E)—-

o/

34. Passing employee name as an argument to function and function will return its
designation.

Create or replace function funcl (f _name In Character)

Return character

Is
V_desg emp.desg%type;
Begin '
Select desg into v_desg
From emp

Where ename=f name;
If sgl%found then
Return(v_desg);
Else
Return null;
End if;

End funcil;

35. Pass department number to procedure and print maximum salary of employee working
in that department. If department number does not exist print message.

Create or replace procedure procl (p_dno in number)

As
Max_sal emp.empsal%type;

Begin]
Select max(empsal) into max_sal
From emp

Where dno=p dno;
If (max_sal >0) then
Dbms_output.put_line('Maximum salary :' | |max_sal);
Else i
Dbms_output.put_line('Dno does not exists‘);
End if;

End proci;

Calling program

Declare
V_dno emp.dno%$type;

Begin
V_dno:=&v_dno%type;
Procl (v_dno) ;

End;

36. Pass department number to a procedure. Procedure will number of employees working
in that dept using In Out variable.

Create or replace procedure proc2
(pr_num in out number)
As
V_num number ;
Begin :
Select count (*)into v_num
From emp
Where dno:=pr_num;
Pr_num:=v_num;
Exception ’
When No_data_found then
Pr_num:=0;
End proc2;

Calling program
Declare
P no number;
Begin
P _ no:=&p_no;
Proc2(p_no) ;
If(p_no=0) then
Dbms_output.put_line{'Passed dno do not exist.’);
Then
Dbms_output.put_line('No.of employees=" | |p_no);
End if;
End;

37. Create a procedure, which display employee details and department name of 1* 5 lowest
paid employees.

Create or replace procedure proc3 as
Cursor ¢ is select empname, empsal,empdesg,dname
From emp,dept
Where emp.dno=dept.dno
Order by empsal asc;
Emp_rec c%rowtype;
Begin
Dbms_output.put_line('Name Designation Salary Department’);
For emp rec in ¢

Loop
If c%rowcount<=5 then
Dbms_output.put_line(emp_rec.empname | |[°° | |emp_rec_empdesq | |
'*| | emp_rec.empsal | | ' | |Jemp_rec.dname);
End if;
End loop;

End proc3;

— 256}

38. Pass designation to a procedure and print names and salary of employee whose salary is
more than average salary of accepted designation.

Create or replace procedure procd(pr_desg in varchar)
As

Cursor ¢ is select empname,empsal from emp

Where empsal<=(select avg(empsal) from emp

where desg=pr_desg) ;

emp_rec c¥rowtype;
begin

dbms_output.put line('Name Salary’);

for emp _rec in c; -

loop
dbms_output.put_line(emp_rec.empname| | '’{ Jemp_rec.empsal);

end loop;

end proc4d;

39. Pass a number to a function and check whether it is divisible by 3 or not.

Create or replace function div(f_no number in number)
Return number
As
Begin

If (mod(f_no,3)=0) then

Return 1;

Else

Return 0;

End if;
End div;

Calling program
Declare
Num number ;
Rev number;
Begin
Num: =#
Rev:=div (num) ;
if(rev=1) then
Dbms_output.put line('Given no is divisible by 3%);
Else '
Dbms_output.put_line('Given no is not divisible by 37);
End if;
find;

R |

40. Pass two strings to a function and print, which string is smallest.

Create or replace function str
(sl in varchar, s2 in varchar)
Return varchar;
As
Lenl=length(sl);
Len2=length(s2);
If(lenl>len2)
Then
- Return . '2?d string is smallest™;
Else if(lenl<len2)
Return '15% string is smallest.’;
Else
Return 'Both are equal’;
End if;
End if;
End str;

41. Pass a character to a function and print numbers of employees having name starting
with the passed character.

Create or replace function no_of emp(f_ch in varchar2)
Return number ;
As

V_cnt number;

Select count(*) into v_cnt

From -emp

Where instr (empname,f_ch)=1;

Return v_cnt;

End no_of_emp;

Calling program
Declare
V_ch varchar (20) ;
n number;
Begin
V_ch:=g&v_ch;
n:=no_of emp(v_ch);
if(n>0) then :
Dbms_output.put_line('No of employees having name starting with ° |
|[v_ch | | 'are:® | jv_cnt);
Else :
Dbms_output.put_line('No one emp having name starting with™| |v_ch);
End if;
End;

42. ° Write a package, which works as a arithmetic calculator.

Create or replace package calci
As
Procedure prc(p numl number,p num2 in number, p_oper in varchar);
End calci;
Create or replace package body calci
As
Procedure prc(p_numl.p_num2,p_oper in varchar) as
answer number;
begin
if(p_oper= '+') then
answer :=p_numl + p_num2;
elseif (p_oper= '-") then
answer:=p _numl - p_num2;
elseif (p_oper= '*') then
answer:=p_numl * p_ num2;
elseif (p_oper= '/") then
answer:=p_numl / p_num2;
end if;
dbms_output.put_line('Answer=" | |answer);
exception
when Zero_Divide then
dbms_output.put_line('Divide by zero error bcoz- 28 pumber is 0%);
end prc;
end calci;

43. Write a package, which consist of 1 procedure and 1 function; Pass a number to
procedure and print factorial of it. Pass name to function and print details of that
employee.

Create or replace package pack
As ‘
Procedure prcl(p_num in number) ;
Function func(f_name in varchar)
Return varchar;
End pack;
Create or replace package body pack
As
Procedure prcl{(p-num number) as

f number:=1;

n number;

begin

AR

for n in l..p_num
loop
f:=f*n;
end loop;
dbms_output.put_line{'Factorial=" | | f);
end prcl;
function func (f_name in varchar)
return varchar
as
v_name emp.enamei¥type;
v_desg emp.edesg¥type;
v_sal emp.esal%type;
begin
select ename ,edesg,esal into v_name,v_desg,v_sal from emp
where ename=f name;)
return v_name,v_desg,v_sal;
end func;
end pack;

Calling program
Declare
num number ;
name varchar (20) ;
begin
num: =#
pack.preci (num) ;
name : =&name;
dbms_output.put_line('Name Designation Salary® | | func(name));
end;

44. A Function for the list of the actor name and movie name in which actor’s rate is greater
than S lakhs.
declare
cursor cl is select mname, aname
from movie,actor,mov_act where
mov_act.mno=movie.mno
and mov_act.ano=actor.ano
and rate>500000;
c cl%rowtype;

begin
dbms_output.put_line('MovieName| |’ '| |ActoxrName) ;
open cl;
loop

fetch c1 into ¢;
exit when cil%notfound;
dbms_output.put_line(c.mname| |’ '||c.aname) ;
end loop;
close c1;
énd;

45. Define a trigger before insert or update of each row of movie, that movies released after
2004 be entered into movie table.

Create or replace trigger t_mov_2004
before insert or update on movie
for each row
begin
if (:new.relyear < 2004) then
raise_application_error (-20001,' Release YEAR SHOULD BE > 2004');
end if; ‘
end;

46. Write a script to list the names of all employees who are female and earning maximum

salary in their department.
declare
cursor cl is select dept_no,dept_name from dept;
cursor c2(dno number) is select emp_name from emp,dept
where emp.salary in (select max(salary),emp.emp_name
from emp,dept where emp.dept_no=dno
and dept.dept_no=emp.dept_no and sex='F!'
group by dept.dept no);
c cl%rowtype;
d c2%rowtype;
begin
open ci;
loop
fetch c1 into c¢;
exit when ci%notfound;
open c2{c.dept no);
loop -
fetch ¢2 into d;
exit when c2%notfound;
dbms_output.put_line(c.dept_namelId.emp_name);
end loop;
close c2;
end loop;
close c1;
end;

47. Write a script to give raise in salary by 5% for all the employees earning less than 3000
and 9% for all employees earning more than or equal to 3000. Also print total numbers
of employees in each case.

declare

cursor c2 is select emp_no,salary from emp, dept
where dept.dept_no=emp.dept_no;

c c2%rowtype;

cntl number;

cnt2 number;

begin
cnti:=0;
cnt2:=0;
open c2;
loop

fetch ¢2 into c¢;
exit when c2%notfound;
if (c.salary < 3000) then
update emp set salary = salary + salary * 0.05
where emp.emp_no = c.emp no;
cntl:=cntl+1;
end if;
if (c.salary >= 3000) then
update emp set salary = salary + salary * 0.09
where emp.emp_no = c.emp_no;
cnt2:=cnt2+1;

end if;
end loop;
close c2;
dbms_output.put_line('No of employees getting 5% increase= '|lcntl);
dbms_output.put_line('No of employees getting 9% increase= '||cnt2);

end;

48. Write a script to transfer all employees of dept. “A” of location “AB” earning the
commission of 50% of their salary to dept “B”. Also print the total number of employees
of dept. “A” transferred to dept “AB”.

declare

cursor cl is select dept_no from deptl where dept name='A";
cursor c¢2 is select emp_no,salary,dept_name,location,comm from
empl,deptl
where deptl.dept _no=empl.dept no;
c cl%rowtype;
r c2%rowtype;
cnt number;

begin

cnt = 0;

open c2;

loop

fetch c¢2 into r; \
exit when c2%notfound;

open cl;

loop

fetch c1 into ¢;
exit when cil%notfound;
if(r.location ='AB' and r.dept_name='A') then
if(r.comm >= (r.salary/2)) then
‘ update empl set dept no = c.dept_no
where empl.emp no = r.emp_no;
cnt:=cnt+1;
end if;
end if;
end loop;
close ci;
end loop;
close c2;

dbms_output.put_line('Total no of emp of dept A transferred to
dept AB are = '||cnt);

end;

49. Write a script for the following: give the names of all those locations, which has total of
at least 6 depts in it. Out of which at least 6 depts are spending approximate Rs. 40000/-
as salary of the employee.

declare
cursor cl is select location from empl,deptl
where deptl.dept_no=empl.dept_no group by location
having count (deptl.dept_no)>=6;
cursor c2(loc varchar2) is select location from empl,deptl
where deptl.location=loc and
deptl.dept_no=empl.dept _no group by location
having count (deptl.dept no)>= and
sum(salary) >= 40000;
Cc cl%rowtype;
d c2%rowtype;
begin
open cl;
loop
fetch c1 into c;
exit when cl%notfound;
open c2(c.location);

loop

fetch c¢c2 into d;
exit when c2%notfound;
dbms_output.put_line('Location = ‘| |d.location) ;
end loop;
close c2;
end loop;
close c1;
end;

50. Write a trigger, which gets activated when company tuple is updated. It should delete all
the related tuples when share value of company becomes < Rs.15/-.
create or replace trigger t_comp
after insert or update on company
for each row
declare
¢ company.c_no%type;
v company.c_share%type;
begin
select ¢_no,c_share into c,v from company
where c_share < 15; :
delete from company where c_no=c;
delete from comp per where c_no=c;

ond; !

51. Write a script, which gets update the book details of book no. entered by user. Raise
exception if the given book number is not present or if the price of the book is greater
than 4000.

create or replace procedure update book(bno in number,bname in
varcahr2,bval in number)

as .
c1 cursor for select * from book;
c cl%rowtype;
flag number;
begin
flag = 0;
open cl;
loop

fetch ¢l into c¢;
exit when not found;
if (c.b_no=bno and c.price<=4000) then
update book set b_pame=bname,price=bval
where b_no=bno;
flag = 1 ;
dbms_putput.put_line('VALUES UPDATED SUCCESSFULLY') ;

end if;

end loop;
close c1;
if(flag = 0) then \
dbms_output.put_line('BOOK NOT FOUND') ;
end if;
end;

52. Write a script, which will take publisher name as parameter and will display details of
books.

create or replace procedure get_book (pname in varchar2)
as
flag number;
cursor cl is select p_name,b_name from book,publisher,book _pub
where publisher. p_no=book_pub.p no
and book.b_no=book_pub.b_no;
c cl%rowtype;

.

begin
flag = 0;
open cl;
loop
fetch c1 into ¢y
exit when cl%notfound
if (c.p_name=pname) then
dbms_output.put_line('Book = '||c.b_name);
flag=1; |
end if; i
end loop;
close c1;

if(flag = 0) then

dbms_output.put_line('ERROR :: BOOK_NOT_FOUND').;

end if; . : :
end;

53. A trigger that will take care of the constraint that movie released after 1995 be entered
in the movie table.
create or replace trigger t_mov_1995
before insert or update on movie
for each row.
begin
if(:new.relyear < 1995) then
raise_application_error(-20001,' YEAR SHOULD BE > 1995');
end 1f;
end;

54. Write a script for the following

List the names of publishers who have published at least 2 books whose prices are
greater than 200 respectively for a department named computer science.
declare
cursor ¢l is select p no from publisher;
cursor c2{pno number) is select p_name,b_name,d_name,price
from book,publisher,dept
where book.p no = publisher.p no
and book.d_no=dept.d no
and book.p no = pno
having count (book.p no)>=2;
c cl%rowtype;
d c2%rowtype;

begin
open cl;
loop
fetch c1 into c;
exit when cl%notfound;
open c2{c.p _noj;
loop
fetch c¢c2 into d;
exit when c2%notfound;
if(d.price > 200 and d.d_name='comp') then
dbms_output.put_line('PUBLISHER : '] |d.p_name) ;
dbms_putput.put_line('BOOK : '1{d.b_name);
dbms_output.put_line('PRICE : "|ld.price);
end if; '
end loop;
close c2;
end loop;
close c1;
end;

55. Write a script for the following

lLlst the names of doctors who visit every hospltal located in the city where théy de not
ive.

declare
cursor cl is select doc_no,doc_name,city
from doctor; .

cursor c2(dcity varchar2) is select hosp no
from hosp
where hosp city != dcity;

cursor c3(dno number,hno number) is select doc_no,hosp_no
from doc_hosp

where doc_no = dno
and hosp_no = hno;
C cl%rowtype;
d c2%rowtype;
e c3%rowtype;
begin
open cl;
loop
fetch c1 into c;
exit when ci%notfound;
open c2(c.city);
loop
fetch c2 into d;
exit when c2%notfound;
open c3(c.doc_no,d.hosp no) ;
loop '
fetch ¢3 into e;
exit when c3%notfound;

dbms_output.put_line ('DOCTOR = '||e.doc_name) ;

end loop;
close c3;
end loop;
close ¢2;
end loop;
close c1;
end;

56. Write a script for the following:

Increase the fare of AC rooms by 80% and NON AC rooms by 30%.

declare
cursor cl is select * from room;
Cc cl%$rowtype;
begin
open cil;
loop
fetch c1 into c¢;
exit when cil%notfound;
if(c.r_type='AC') then

update room set fare = c.fare
where r_no = c.r_no;

else ‘
update room set fare = c.fare
-where r_no = c.r_no;

end if;

* 1.30

3 * X
wy

end loop;
close ci;
dbms_output.put_line (' FARES UPDATED SUCCESSFULLY '):

end;

57. Program to find largest number between two numbers.

Declare
N1 number; .
N2 number; ‘
Begin
N1:=&nl;
N2 :=&n2;
If (N1>N2) then
Dbms_output.put_line('N1 is Largest’);
Else '
Dbms_output.put_line ('N2 is Largest’);
End if;
End;

58. Consider the following Relational Database:
Doctor(d_no, d_name, d_city)
Hospital(h_no, h_name, h_city)
Doc_Hosp(d_no, h_no)

Write a function which will count number of doctors visiting to ‘Poona’ hospital.

Solution

create or replace function cdoctor()return number is
dno Doc_Hosp.d_no%type;

begin

select count(*)into dno

from Doctor, Hospital, Doc_Hosp

where Doctor.d_no=Doc_Hosp.d_no

and

Hospital.h no=Doc_Hosp.h_no

and Hospital.h name='Poona Hospital™;

return dno;

exception

when _no_data_found then
raise_application_error (-20000,
end;

~

Doctors does not exist’);

59. Consider the following Relational Database:

Book (b_no, b_name, pub_name, price)
Author (a_no, a_name)
Book-Auth (b_no,a_no)

Write a procedure to display details of all books written
by ‘Mr. Mohite’.

Solution

create or replace procedure dbooks () is cursor cil is
select Book.b_no,b_name,pub name,price from
Book, Author,Book_Auth
where
Book.b_no=Book_ Auth.b_no and
Author.a_no=Book_Auth.ano and a_name='Mr. Mohite’;
bno Book.b_no%type;
bname Book.b_name%type;
pname Book.pub name%type;
bprice Book.price%$type;
begin
open cil
loop
fetch ¢l into bno,bname,pname,bprice;
exit when cl%notfound;
dbms_ouput.put_line(bno|| bname || pname || bprice);
end loop;
close c1;
end;

60. Consider the following Relational Database:
Customer(c_no, c_name, c_city)
Loan(l_no,l_amt, no_of_years, ¢_no)
Define a trigger that restricts updation of Loan Amount.

Solution 7

create or replace trigger tloan
before update on Loan

for each row

begin

if(:new.l_amt <>Eold.l_amt) then
raise_application _error (-202, ‘cannot update) ;
end if;

end;

61. Consider the following Relational Database: {E}

Employee(e_no, e_name, city,dept_name)
Project(p_no, p_name, status)
Emp_Proj(e_no, p_no, no_of_days)

Werite a cursor to display details of all projects having status ‘Completed’. '

Solution

declare

cursor ci is

select p_no,p_name,status

from Project,Employee,Emp Proj

where Employee.e_noc=Emp_proj.e_no

and Project.p no=Emp_Proj.p_no
And status="completed’;
prec Project¥row type;
begin
open cl
loop
fetch ¢l into prec;
exit when cl%not found;

dbms_output.put_line(prec.p_noll prec.p_name] |

prec.status) ;
end loop;
end;

62. Write a package which consists of one procedure and one
function. For this consider the following Relational

Database:
Customer (cust_no, cust_name, cust_city)

Account (acc_no, acc_type, balance, cust_no)
i Pass account number as a parameter to a procedure and

display account details.

ji. Pass customer number as a parameter to a function and

return total number of accounts of given customer.

Solution

Create or replace package packl
as '

procedure pil{ano in number) ;
function f1l(cno in number);
return number;

end packl;

/

create or replace package body packl

as

procedure pl(a in number)
is

arec Account%row type;
begin

select * into arec

from account

where acc_no=a;

dbms_output.put_line(arec. acc_no || ' '|larec.acc_typel| >]
arec.balance

1" "1| arec.cust_no) ;

end pil;

function f1(cno in number) return number
is

n number;

begin

select count(*) into n

from Account, Customer

where Customer.cust_no=Account.cust_no
and Account.cust_no=cno;

return n;

end f1;

end packil;

/

63. Consider the following relational database:
Department (D_no, D_name, Location)
Employee (Eno, Ename, Edesg, Esalary, D_no)
Write a cursor to dlsplay the department details of
employee “Mr. Joshi”

Solution

DECLARE
CURSOR c¢1 1is
select D_no,D_name, Location
from Department, Employvee)
where Department.D_no=Employee.D no
and Ename= 'Mr.Joshi®

Dno Department.D_no%type;
Dname Department.D_name$type;
Loc Department.Location$type;

BEGIN
dbms_output.put_ llne(Department NO||'! '| |[Department Name] |®

| | Location) ;
OPEN c1;
if ¢c1%ISOPEN THEN
LOOP
FETCH c1 into Dno,Dname, loc;
EXIT WHEN cl1%NOTFOUND;
if cl1%FOUND THEN

dbms_output.put_line(Dno|]| ' '| |Dname| | ° *111loc);
END IF;

END LOOP;

ELSE

dbms_output.put_line('unable to open cursor');

END IF;

CLOSE c¢1;

END;

/

64. Consider the following relational database:
Item(Itemno, Itemname, Qty)
Supplier (Supplierno, Suppliername, Address, City, Phno)
I_S(Itemno, Supplierno, Rate, Discount)
Define a trigger before updation on discount field, if the
difference in the old discount and new discount entered is
> 15% raise an exception and display corresponding
message.

Solution

create or replace trigger ISDiscount

before insert or update

on 1I_8S

for each row

begin

if: old.Discount - new.Discount > 0.15 then

raise_application_error(-20002,'Discount is greater than 15%7);
endif;
end;

65. Consider the following relational database:
Game (Game_no, Game_name, Teim_size,
Name_of_coach)
Player (Player_no, Player_name, Player_city)
Game _Player (Game_no, Player_no)
Write a function which will take game name as a

parameter and return total number of players playing that
game.

®

Create or replace function rtotalbooks (gname varchar2)return
number is

Total player.player_no%type

begin.

select count{(Game_Player.Player no)into Total

from Game,PlayeI,Game_Player

where

Game .Game_no=Game_Player .Game_ no

and Player.Player_no=Game_Player.Player_ no

and Game_name=gname;

return(Total) ;

exception

when no_data_found then
raise_application_error(-20000, ‘Game does not exist’);
end;

Solution

66. Consider the following relational database:
Publisher (P_ne, P_name, P_addr);
Book (B_no, B_name, Price, P_no);
Write a script, which will update the book details of book
number entered by user. Raise exception if the given book

number is not present or if the price of the book is greater
than 500.

Solution

declare

mbook_no Book.B no%type;
mbook_name Book.B _name %type;
mprice Book.Price%type;
moreprice exception;
begin

select B_no into mbook no
from Book

where

B no="&B no";

if mbook_no is not null
then ‘
mbook_name="&B_name’;
mprice:="& Price’;

if mprice>500 then

raise moreprice;

else

update Book

set B name=mbook_name, Price=mprice
where B no=mbook_no;

end if;

o

end if;

exception

when neo_data_found then

raise application error (-20000, ‘Book not found’);
when moreprice then
raise_application_erroxr (-20001, ‘Price > 500/-');
end;

67. Write a package, which consists of one procedure and one
function; pass a number to procedure and print addition
of two numbers. Pass city name as a parameter to function
and display number of hospitals located in that city for
consider following relation:

Hospital (Hno, Hname, Hcity)

Solution

Create or replace package packl

as

procedure pl(a in number, b in number);
function f1 (fname varchar2)

return number;

end packl;

/

create or replace package body packl
as

procedure pl(a in number, b,in number)
as

¢ number;

begin

c=a+b;
dbms_output.put_line('addition’||c);
end pil; ‘

function f1

(cname varchar2)

return number

as '

n number ;

begin

select (count*) into n from hospital
where Hcity=cname;

return n;

end f1;

end packil;

/

68. Consider the following relational database:
Doctor(doct_no,doct_name,d_city)

Hospital(hosp_no,hosp_name,h_city)
Doc-Hos(doct_no,hosp_no)

Write a script.of cursor to print the list showing the
hospital-wise list of doctors.

Solution

declare
cursor cl is select * from hospital;
cursor c2(hno varchar) is

select d.doct_name
from doctor d,Doc-Hos
where hno=Doc-Hos.hosp_no and d.doct_no=Doc-Hos.doct_no;

begin
for x in c¢1 1loop
dbms_output.put_line('Hospital:‘|l‘ "I |x.hosp_name) ;

dbms_output.put_line('doctor:") ;

for yv in c2(x.hosp_no) loop
dbms_output.put_line(' '"[ly.doc_name) ;
end loop;
end loop;
end;

Solution

69. Consider the following relational database:
Customer(cust_no,cust_name,cust_city)
Account(acc_no,acc_type,balance)
Cust_Acc(cust_no,acc_no)

Define a trigger before insert or update of each row of
account table for existing customer, if the customer is
having balance less than Rs.500 in his account then raise
an exception and display corresponding message.

create or replace trigger CAccount
Before insert or update

on Account

for each row

begin
if: new.balance <500 then
raise_application_error(-20000,‘Balance should be greater
than 500°) ;
end if;

end;

70. Consider the following relational database
Publisher(p_no,p_name,p_addr)

Book(b_no,b_name,price)
Pub-Book(p_no,b_no)
Write a function that will accept publisher name as
parameter and return number of books published by that
publisher.
Solution
create or replace listofbooks (pubname varchar)return numberis
Total Book.b_no%type;
begin
select count(b_no)into total from Publisher,Book,Pub-Book
where
Publisher.p no=Pub-Book.p_no and
Book.b_no=Pub-Book.b_no
and p_name=pubname;
return(total) ;
exception
when no_data_found then
raise_application_error(-20000,‘pUblisher does not
exist’);

end;

71. Consider the following relational database
Department(d_no,d_name,location)

Employee(e_no,e_name,e_addr,e_salary,d_no)
Write a procedure which will take department name as

parameter and will display details of employees working
in that department.

Solution
create or replace procedure detailsocfemp(dname varchar)
cursor ci is
select e_no,e_name,e_addr,e_salary
from Employee,Department
where
Department.d_no=Employee.d_no and d_name=dname;
Empno Employee.e_no%type;
Empname Employee.e_namei¥type;
Empaddr Employee.e_addr%type;
Empsal Employee.e_salary%type;
begin
open cl;
loop

fetch ¢l into Empno, Empname, Empaddr,Empsal;
exit when cl%notfound;
dbms_output.put_line (Empno| |Empname| |Empaddr | |Empsal) ;
end loop;
close c1;
end;

72. Write a package, which consist of one procedure and one
function. Pass two numbers to procedure and print largest
number. Pass department number to function and print
location of that department for this consider following
relation: Department(d_no,d_name,location)

Solution
create or replace package packl
as '
procedure pl(n,m in number) ;
function f1(dno number) return varchar
end packl; .
create or replace package body packl
as
procedure pil
(n,m in number)
begin
if(n>m)
dbms_output.put_line(' n is largest number’||n);
else

dbms_cutput.put_line('m is largest number | |{m) ;
end if;
end;
function f1
(dno number)
return varchar
as

loc varchar;
begin
select location into loc from department where d_no=dno;
return loc;
end f1;

end packi1;

73. Consider the following Relational Database:
Employee(eno., ename, city, deptname)

Project (pno., pname, status)
Emp-proj(eno,pno, no-of-days)
Write a cursor which will display project wise list of employee.

Solution

declare

cursor Cl.is

select pno,pname, status

from Employee,Project, Emp-proj

where Employee.eno = Emp-proj.eno

and Project.pno = Emp-proj.pno

rec Cl%rowtype;

begin

open C1;

loop

fetch

fetch C1 into rec;

exit when cl%not found;

dbms_output.put_line (rec.pno || rec.pname || rec.status)

end loop;

close C1;

end;

74. Consider the following relational database:
Dept(deptno., deptname, location)
Emp (empno, empname, sal, comm, designation, deptno)
Write a procedure to increase salary of given employee' by 5% and display updated

salary.

Solution

create or replace procedure
pl{name in varchar2)as
salary number; en number;
nm varchar2;

begin
update Emp set sal=sal+0.05*sal

where empname=name;

select empno,empname,sal into

en,nm, salary from Emp’

where empname = name
dbms_output.put_line(en| |nm]||salary);
end;

Consider the following relational database:

Movie (mno, mname, relyear)
Actor(ano, aname)
Mov-act(mno,ano)

Define a trigger before insert or update of each row of
movies that movie released after 2010 be entered into
movie table.

Solution

Create or replace trigger t_mov
before insert or update on Movie
for each row

begin

if (:new.relyear<2010) then
raise_application error (-20001, 'Release year should be > 2010%) ;
end if;

end;
76. Consider the following Relational Database:
Politician (pno, pname, desig, partycode)
Party(partycode, partyname)
Write a function to return total number of politicians of a
given party.

Solution

create or replace function

totalpoliticians (pname in varchar2)

return number is

total number;

begin

select count(Politician.partycode)

into total from Politician, Party

where partyname = pname and Politician.partycode = Party.partycode;
returr(total) ;

exception

when no_data_found then

raise_application_error(—20000; 'party does not exist’');
end;

77. Write a package which consists of one procedure and one
' function.

Consider relation person.

Person(pno, pname, paddr, pcity,phno)

Procedure of a package will display details of given
person. Function of a package will count number of
person from Pune city.

T

Solution

create or replace package packl
as

procedure pl(no in number) ;
function £1();

return number;

end packl;

/

create or replace package body packl
procedure pl(no in number)

is

rec Person%rowtype;

begin

select * into rec from Person
where pno=no;
dbms_output.put_line(rec. pno || rec.pname] |rec.paddr| |
rec.pcity| | rec.phno) ;

end pl;

function f1() return number

is

cnt number ;

begin

select count(*) into cnt

from Person where pcity = *“Pune”;
return cnt;

end f1;

end packl;

)

o

o ===
N AV
[A

=

= S

= Ne

1 What is PL/SQL? Give advantages of PL/SQL. [Oct.2015 — 2M]

2 Give syntax of stored procedure in PL/SQL. [0ct.2015 - 2M]

3 Define cursor. Enlist attributes of cursor. [Oct.15,14 — 2M]

4. What is difference between % type and % row type? [Apr.15,0¢ct.10 — 2M]
5. Write syntax of for loop in PL/SQL with example. [Apr.2015 - 2M]

6 Write syntax and example of while loop in PL/SQL. [0ct.2014 = 23

7 Give proper syntax of trigger. 0ct.12.Apr.10.00 2
8 Which are different attributes of cursor? [Oct.2012 — 2M]

9. Define PL/SQL. What is use of PL/SQL? [Apr.2012 — 2M]

10. What is structure of PL/SQL block? ‘ [Apr.2012 — 2M]

11. What is Trigger? What are the types of Trigger? [Apr.2012 — 2M]

[Oct.2011 — 2M]
[Oct.2011 — 2M]
[Apr.2011 — 2M]
[Apr.2011 — 2M]
[Oct.2010 — 2M]
[Oct.2010 — 2M]
[Apr.10,0¢t.09 — 2M]

[Oct.2015 — 4M]

[Oct.2015 ~ 4M]

[Oct.2015 — 4M]

[Oct.2015 — 4M]
[Oct.2015 — 4M]

[Oct.2015 - 4M]

[Oct.2015 — 4M]
[Oct.2015 — 4M]

12.
13.
14.
15.
16.
17.
18.

1.

et

6.

@

What is Cursor? List the Attributes of Cursor.

What is PL/SQL? Give PI/SQL block structure.

List modes of trigger and its syntax.

Give proper syntax of procedure in PL/SQL.

List the steps involved in defining the explicit cursor.

Give proper syntax for function in PL/SQL.

What is Cursor? Which are the various attributes of Cursor?

Write a package which consist of one procedure and one
function. Pass a number as a parameter to a procedure and print
whether no. is +ve or —ve.

Pass students rollno as a parameter to a function and print
percentage of student.

For this consider the following relation:

Student (rollno, name, addr, total, per).

Consider the following relational database.Publisher (pno,
pname, pcity) -

Book (bno, bname, price, pno)

Write a trigger which will restrict insertion or updation on price,
price should not be less than zero.

Consider the following relational database.

Wholesaler (wno, wname, city)

Product (pno, pname, price)

Wp (wno, pno)

Write a cursor to display wholesalerwise product details.
Consider the following relational database:party (pcode, pname)
politician (pno, pname, pcity, pcode)

Consider the following relational database.

Student (sno, sname, city, class)

Subject (subno, subname)

Stud-sub (sno, subno)

Write a function which will take class as a parameter and will
return total number of students

Consider the following relational database:

party (pcode, pname)

politician (pno, pname, pcity, pcode)

Write a procedure to display details of all politician of the given
party.

Write a note on exception handling in PL/SQL.

What is Trigger? Explain types of trigger in detail.

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

Write a package which consist of one procedure and one
function, consider relation student. Student (Roll-no,
stud-name, class, stud-addr, percentage) procedure of a

package will display details of given student. Function of a

package will count total number of students having percentage
greater than 80 and class “TYBCA’.

Consider the following relational database.

Book (bno, bname, pubname, price, dno)

Department (dno, dname)

Write a procedure which will display total expenditure on
books by a given department.

Consider the following relational database.

Department (deptno, deptname, location)

Employee (empno, empname, salary, commission, designation,
deptno)

Write a trigger for an employee table that restricts insertion or
updation or deletion of data on ‘Sunday’.

Consider the following relational database.

Politician (pno, pname, description, partycode)

Party (partycode, partyname)

Write a clusor to display partywise details of politicians.
Consider the following relational database.

Employee (empno, empname, city, deptname)

Project (Projno, proj name, status)

Emp-proj (empno, proj no, number-of-days)

Write a function which will return total number of employees
working on any project for more than 60 days.

What is cursor? Explain different attributes used in it.

What is trigger? Explain trigger with proper syntax and
example.
What is PL/SQL? Explain block of PL/SQL.

What is exception handling? Explain user defined exception

with example.

What is the difference between function and procedure, explain
it with example.

Explain different data types in PL/SQL.

[Apr.2015 — 4M}

[Apr.2015 - 4M]

[Apr.2015 — 4M}

[Apr.2015 — 4M]

[Apr.2015 — 4M]

[Apr.15,12 — 4M]
[Apr.2015 — 4M]

[Apr.2015 — 4M]
[Oct.2014 — 4M]
[Oct.2014 — 4M]
[Oct.14 Apr.12,10 — 4M]

[Oct.2014 — 4M]

[Oct.2014 - 4M)]

[Oct.2014 — 4M]

[Oct.2014 - 4M]

[Oct.2014 — 4M]

[Oct.2012 — 4M]

[Oct.12.Apr.11 — 4M]
[Oct.2012 — 4M]

[Oct.2012 — 4M]

21.

22.

23.

26.
27.

Consider the following Relational Database:
Employee(eno., ename, city, deptname)
Project (pno., pname, status)
Emp-proj(eno,pno, no-of-days)

Write a cursor which will display project wise list of employee.
Consider the following relational database:Dept(deptno., deptname,
location)

Emp (empno, empname, sal, comm, designation, deptno)

Write a procedure to increase salary of given employee by 5% and
display updated salary

Consider the following relational database:

Movie (mno, mname, relyear)

Actor(ano, aname)

Mov-act(mno,ano)

Define a trigger before insert or update of each row of movies that
movie released after 2010 be entered into movie table.

Consider the following Relational Database:

Politician (pno, pname, desig, partycode)

Party(partycode, partyname)

Write a function to return total number of politicians of a given
party.

Write a package which consists of one procedure and one function.
Consider relation person.

Person(pno, pname, paddr, pcity,phno)

Procedure of a package will display details of given person.
Function of a package will count number of person from Pune city.
Explain following pre-defined exceptions.
no_data_found,zero_divide,too_manyrows, dup_val_on_index.
What is Parameterized Cursor? Explain it with example.

Consider the following Relational Database:

Doctor(d_no, d_name, d_city)

Hospital(h_no, h_name, h_city)

Doc_Hosp(d_no, h_no)

Write a function which will count number of doctors visiting to
‘Poona’ hospital.

Consider the following Relational Database:

Book (b_no, b_name, pub_name, price)

Author (a_no, a_name)

Book-Auth (b_no,a_no)

Write a procedure to display details of all books written by ‘Mr.
Mohite’.

29.

30.
31.

32.

33.

34.

3s.

Write a package which consists of one procedure and one
function. For this consider the

following Relational Database:

Customer (cust_no, cust_name, cust_city)

Account (acc_no, acc_type, balance, cust_no)

1. Pass account number as a parameter to a procedure and
display account details.
ii. Pass customer number as a parameter to a function and

return total number of accounts of given customer.
What is Cursor? Explain different Attributes used in it.

What is Exception Handling? Explain Predefined and User.
Defined Exception with example.

Consider the following relational database:

Department (D_no, D_name, Location)

Employee (Eno, Ename, Edesg, Esalary, D_no)

Write a cursor to display the department details of employee

“Mr. Joshi”

Consider the following relational database:

Item(Itemno, Itemname, Qty))

Supplier (Supplierno, Suppliername, Address, City, Phno)
I_S(Itemno, Supplierno, Rate, Discount)

Define a trigger before updation on discount field, if the
difference in the old discount and new discount entered is > 15%
raise an exception and display corresponding message.

Consider the following relational database:

Game (Game_no, Game_name, Team_size, Name of_coach)
Player (Player_no, Player_name, Player_city)

Game Player (Game_no, Player_no)

Write a function which will take game name as a parameter and
return total number of players playing that game.

Consider the following relational database:

Publisher (P_no, P_name, P_addr);

Book (B_no, B_name, Price, P_no);

Write a script, which will update the book details of book number
entered by user. Raise exception if the given book number is not
present or if the price of the book is greater than 500.

[Oct.012 — 4M]

[Oct.2012 - 4M]
[Oct.2012 — 4M)]

[Apr.2012 - 4M]

[Apr.2012 - 4M]

[Apr.2012 — 4M]

[Apr.2012 — 4M]

[Apr.2012 — 4M]

[Oct.11,09,Apr.11 — 4M]
[Oct.11.09 — 4M]

[Oct.2011 — 4M]

[Oct.2011 — 4M]

[Oct.2011 — 4M]

[Oct.2011 — 4M]

[Oct.2011 — 4M]

36.

37.
38.

40.

41.

42.

43.

Write a package, which consists of one procedure and one
function; pass a number to procedure and print addition of two
numbers. Pass city name as a parameter to function and display
number of hospitals located in that city for consider following
relation:

Hospital (Hno, Hname, Hcity)

Explain advantages and disadvantages of PL/SQL. .
Explain different control structures used in PL/SQL with
proper example.

Consider the following relational database:
Doctor(doct_no,doct_name,d_city)
Hospital(hosp_no,hosp_name,h_city)
Doc-Hos(doct_no,hosp_no)

Write a script of cursor to print the list showing the
hospital-wise list of doctors.

Consider the following relational database:
Customer(cust_no,cust_name,cust_city)
Account(acc_no,acc_type,balance)

Cust_Acc(cust_no,acc_no)

Define a trigger before insert or update of each row of account
table for existing customer, if the customer is having balance
less than Rs.500 in his account then raise an exception and
display corresponding message.

Consider the following relational database
Publisher(p_no,p_name,p_addr)

Book(b_no,b_name,price)

Pub-Book(p_no,b_no)

Write a function that will accept publisher name as parameter
and return number of books published by that publisher.
Consider the following relational database
Department(d_no,d_name,location)
Employee(e_no,e_name,e__addr,e_salary,d_no)

Write a procedure which will take department name as
parameter and will display details of employees working in
that department.

Write a package, which consist of one procedure and one
function. Pass two numbers to procedure and print largest
number. Pass department number to function and print location
of that department for this consider following relation:
Department(d_no,d_name,location)

44.

45.

46.

47.

48.

49.

50.

AR

5-85%
..

Employee(e_no,e_name,e addr,e_salary,d no)

Write a procedure which ‘will take department name as
parameter and will display details of employees working in
that department.

Write a package, which consist of one procedure and one
function. Pass two numbers to procedure and print largest
number. Pass department number to function and print location
of that department for this consider following relation:
Department(d_no,d name,location)

What is cursor? List the attributes of cursor with suitable
example.

Consider the following relational database
Publisher(Pub_no,Pub_name,Pub_city)

Book(Book_no,book name,book_price)
Pub_Book(Pub_no,Book_no)

Write a function which will take publisher name as parameter
and will return total number of books published by given
publisher.

Consider the following relational database
Customer(cust_no,cust name,cust_city)
Account(Account_no,Account_type,balance,cust_no)

Write a procedure which will take account type as a parameter
and will display customer name having accounts of given type.
Consider the following relational database

Doctor (Doct_no,Doc_name,doc_city)
Hospital(Hosp_no,Hosp_name,hosd_city)
Doc-Hosp(Doct_no,Hosp_no)

Write a script using cursor to print doctor wise list of hospitals
visited

Consider the following relational database
Department(Dept_no,Dept_name) v
Employee(EMp_no,Emp_name,dersignation,salary,dept_no)
Define a trigger that will take care of the constraint that
employee’s salary should not be less than zero.

Write a package which consists of one procedure and one
function. Pass a number as parameter to a procedure and print
whether a number is positive or negative. Pass roll number

[Oct.2011 — 4M]

[Apr.2011 — 4M]

[Apr.2011 - 4M]

[Apr.2011 — 4M]

[Apr.2011 — 4M]

[Apr.2011 — 4M]

[Apr.2011 — 4M]

[Oct.2010 - 4M]
[Oct.2010 — 4M]

[Oct.2010 — 4M]
[Oct.2010 — 4M]

[Oct.2010 — 4M)]

[Oct.2010 — 4M]

[Oct.2010 — 4M]

[Oct.2010 — 4M]

[Apr.2010 — 4M]

51.
52.

53.

55.

56.

57.

58.

59.

of student as a parameter to function and return percentage of
that student for this consider following relation.
Student(Roll_no,Stud_name,Stud_addr,Stud percentage)
What is cursor? Explain two types of cursors. |

What is PL/SQL? Give PL/SQL block structure and explain its
details.

What is the package in PL/SQL? Explain with example.
Consider the following relational database:
doctor(doct_no,doct_name,doct_city)
hospital(hosp_no,hosp_name,hosp_city)
doct_hosp(doct_no,hosp no);

Write a script using cursor to print hospitalwise list of doctors.
Consider the following relational database:
department(dept_no,dept name)
employee(emp_no,emp_name,designation,salary,dept no)
Define a trigger that will take care of the constraint that
employee salary should not be less than zero.

Consider the following relational database
publisher(pub_no,pub_name,pub_city)

book(book no,book name,price)

pub_book(pub_no,book no)

Write a procedure which will take publisher name as parameter
and will display books published by that publisher.

Consider the following relational database
customer(cust_no,cust_name,cust_city)
account(acc_no,acc_type,balance,cust_no)

Write a function which will take acc_type as a parameter and
will return total number of accounts of given acc-type.

Write a package which consist of one procedure and one
function. Pass a number as a parameter to a procedure and
print whether a number is even or odd. Pass per_no of a person
as a parameter to a function and return ph_no of that person.
For this consider the following relation:

Person (per_no, per_name, per_addr, per_city, ph_no);

What is Trigger? Explain any two types of triggers.

®
UISION

Chapten 3
TRANSACTION

MANAGEMENT

1. Transaction Concept

A transaction is a unit of program execution that accesses and possibly updates various data items.
A transaction results from the execution of a user program written in a high level data manipulation
language or programming language (for e.g. SQL, COBOL, C, PASCAL) and is delimited by
statements of the form begin transaction and end transaction. The transaction consists of all
operations executed between begin and end of the transaction.

For example: A transaction includes read and write operations to access and update the database.

Read (X)
X=X+N

| Write (X)

: Read (Y)
Y=Y+N
Write (Y)

2.

Transaction Properties

Transactions should have several properties. These are called the
ACID properties and they should be enforced by the concurrency
control and recovery methods of the DBMS.

The following are the ACID properties of transactions:

1. Atomicity: A transaction is treated as a unit of operation.
Either all the transactions actions are completed or none of
them are. It is also known as ‘all-or-nothing property’. If the
transaction fails to complete for some reason, the recovery
manager must undo any effects of the transaction of the
. database.

2. Consistency: The consistency of a transaction is simply its
correctness. It implies that if the database was in a consistent
state before the start of a transaction then on termination of a
transaction the database will also be in a consistent state.

Each transaction, run by itself with no concurrent execution of other transactions, must
preserve the consistency of database. This property must hold for each transaction.

The user’s who submits the transaction must ensure that when run to competition by itself
against a consistent database instance, the transaction will leave the database in a consistent
state.

For example, the fund transfers between bank accounts should not change the total amount of
money in the accounts. To transfer money from one account to another, a transaction must
debit one account, temporarily leaving the database inconsistent in a global sense, even though
the new account balance may satisfy aﬁy integrity constraints with respect to the range of

acceptable account balances. The user’s notion of a consistent database is preserved when the -

second account is credited with the transferred amount.

Isolation: It indicates that actions performed by a transaction will be isolated or hidden from
outside the transaction until the transaction terminates. It gives the transaction a measure of
relative independence.

Durability: It ensures that once a transaction commits, its results are permanent and cannot be
erased from the database. These changes must not be lost because of any failure.

3. Transaction States

A transaction is an atomic unit of work that is either completed in its entirety or not done at all. For
recovery purposes, the system needs to keep track of when the transaction starts, terminates, and
commits or aborts. A transaction that completes the execution successfully is called as a committed
transaction. The committed transaction should always take the database to the new consistent state.
The changes made by the committed transaction should be permanently stored in the database even
if there is any system failure.

A database transaction is a logical unit of database operations
which are executed as a whole to process user requests for retrieving
data or updating the database.

There are five states of transaction:

1. BEGIN: The transaction on the database begins by the
execution of the first_statement of the transaction that is it
becomes active.

2. ACTIVE: In this state, the transaction is modifying the
database state. In this state, the transaction is performing read
or write operations on database state. At the end of this state
the transaction will enter into three states, i.e., start, commit,
abort or error.

3. COMMIT: In the start-commit state, the transaction instructs

"~ the DBMS to reflect the change into the database. Once these

changes are done in database the transaction is said to be in a
commit state.

4. ROLLBACK: It may be possible that all changes made by
the transaction are not reflected top the database due to any
kind of failure. In this situation, transaction go to abort or
error state. An aborted transaction that made no changes to the
database is terminated without the need for rollback.

5. END: A transaction can end in three different states:
a. Successful termination: A transaction ends after a commit operation.
b. Suicidal termination: A transaction detects an error during its processing and thus
aborts and performs a rollback operation.
c. Murderous termination: The operating system or the DBMS can force the transaction to
be aborted for any reason.

Begin Transaction

Commit

Partially
Committed

System
failure Database
Modified
Error Detected
during transaction
Consistent
State

Roll back

Rollback

Database unmodified

Figure 3.1: Different states of a transaction

4. Concurrent Execution

Transaction processing systems usually allow multiple transactions to run concurrently. Concurrent
execution of multiple transactions causes several complications with the consistency of data and may
result in some inconsistent database, whereas serial execution of transactions is much easier to
implement and maintain the consistency of database.

Read (X)
Write (X)
Read (Y)
Write (Y)
Read (2)
Write (2)

A schedule involving two transactions

@

The schedule shown above represents an interleaved execution of two transactions. Ensuring
transactions isolation while permitting such concurrent execution is difficult, but is necessary for
performance reasons.

Following are the two advantages of concurrent execution:

1.

Improved resource utilization and throughput: While one transaction is waiting for a page
to be read from disk, the CPU can process another transaction. This is because I/O activity can
be done in parallel with CPU activity in a computer. Overlapping I/O and CPU activity
reduces the amount of time disks and processors are idle and increases system throughput.

Throughput is the number of transactions executed in a given amount of time. Because of this
resource utilization has also increased as the idle time is reduced.

Reduced waiting time: There is mix of transactions running on a system. Some transaction
may be short and some long. If transactions are run serially short transaction may have to wait
for a preceding long transaction to complete. But if we run them concurrently then the waiting
time of short transaction is reduced. It also reduces the average response time. Average
response time is the average time of the transaction to be completed after it has been
submitted.

Problems in Concurrent execution

1.

A schedule involving consistent, committed transactions could
run against a consistent database and leave it in an
inconsistent state.

Two actions on the same data object conflict if at least one of
them is write. :

The three situations can be described in terms of when the
actions of two transactions TO and T1 conflict with each other.

i Reading uncommitted data (WR conflicts): A transaction T1 could read a database
object X that has been modified by another transaction TO which has not yet committed.
Such a read is called a dirty read.

For example, consider two transactions TO and T1 each of which run alone, preserve
database consistency. Transactions TO transfer 200 Rs. from account X to Y and
transaction T1 add both X and Y by 8% interest to each account.

Read (X) Read (X)
X=X-200 | X=X+ (X*0.8)
Write (X) Write (X)
Read (Y) Read (Y)
Y=Y+200 [Y=Y +(Y*0.8)
Write (Y) Write (Y)
Commit Commit

Suppose that their actions are interleaved (Transaction TO and T1 interleaved) so that.

Read (X)
X=X+ (X*0.8)
Write (X)
Read (Y)
Y=Y+(Y*0.8)
Write (Y)
Commit

Read (Y)+

Y =Y+ 200

Write (Y)

Commit

The account transfer transaction TO deducts 200 Rs. from account X. The interest
deposit transaction T1 reads current value of accounts X and Y and adds 8 % inertest to
each. The account transfer transaction T1 credits 200 Rs. to account Y.

The problem is that:

a. Transaction TO may write some value for X that makes database inconsistent.

b. As long as TO overwrites this value with a correct value of X before committing
no harm is done if,
TO and T1 run in same serial order because transaction T1 would not see the
temporary inconsistency.

c¢. Itsinterleaved execution can expose this inconsistency and lead to an inconsistent
final database state.

ii. Unrepeatable Reads (RW conflicts): A transaction T1 could change the value of an
object X that has been read by transaction TO while T1 is still in progress. Transactions
TO reads the value of X again and it is changed by another transaction T1 between the
two reads. Transaction TO and T1 read the same value.

™
@—
9—

iii. ~ Overwriting uncommitted Data (WW conflicts): A transaction T1 could overwrite the
value of an object X, which has already been modified by a transaction TO, while TO is
still in progress. Even if T1 does not read the value of X written by TO.

For example. Suppose that Deepak and Sourabh are two employees and their salaries
must be equal. Transaction TO set to salaries to Rs. 2000 and T1 set to salaries Rs. 3000.
If we execute serially in the serial order TO followed by T1 both receive Rs. 3000, the
serial order T1 followed TO both receive Rs. 2000. Notice that neither transaction read a
salary value before writing it such write is called blind write.

Schedule

A schedule is a list of actions (reading, writing, aborting, committing) from a set of transactions and
the order in which two actions of transactions T appear in a schedule must be the same as the order
in which they appear in T.

Schedules represent sequential order in which instructions are executed in the system. S schedule of
n transactions T0,T1,T2,...... ,Tn is an ordering of the operations of the transactions subject to the
constraint that for each transaction Ti that is in S, the operations of Ti in S must appear in the same
order in which they occur in Ti. The operations of other transactions Tj can be interleaved with the
operations of Ti in S.

For example: Consider the simple banking system which has number of accounts and a set of
transactions that access and update those accounts. Consider two transactions TO and T1 which
transfer funds from one account to another. Transactions TO transfer Rs.200 from account P to
account Q. it is defined as,

Transaction T1 transfer 20 percent of the balance from account P to account Q. it is defined as,

Read (P).
Temp =P * 0.2;
‘Write (P);
Read (Q);
Q= Q + Temp;
Write (Q);

{E} There are two types of schedule:

Serial Schedule: The transactions that are executed from start
to end one by one is called serial schedule. It consists of a
sequence of instructions from various transactions where the
instructions belonging to one single transactions appear

together in that schedule.

Schedule 1: A serial schedule T0 followed by T1.

Schedule 1

Read (A);
A=A -200;
Write (A);
Read (B);
B =B +200;
Write (B);

Read (A);
Temp=A*0.2;
A=A-temp;
Write (A);
Read (B)
B =B + Temp;
Write (B),

S

Schedule 2: A serial schedule T1 followed by TO0.

Read (A);
Temp=A*0.2;
A=A -temp;
Write (A);
Read (B);
B =B + Temp;
Write (B);

Read (A),

A=A -200;

Write (A);

Read (B);

B =B + 200;

Write (B);

@
2. Concurrent Schedule: When several transactions are executed concurrently the
corresponding schedule is called concurrent schedule.

Schedule 3: A concurrent schedule

Schedule 3

Read (A)

A=A-200

Write (A) Read (A)
Temp=A*02
A=A-Temp
Write (A)

Read (B)

B=B+200

Write (B) Read (B)
B=B+Temp
Write (B)

Several execution sequences are possible. The schedule 3 will produce the same result as schedule 1.
But all concurrent executions may not result in a correct state.

5. Serializability

Serializability is the generally accepted criterion for correctness for
the execution of a given set of transaction. Transaction is considered
to be correct if it is serializable i.e. it produce the same result as
some serial execution of the same transaction, running them one at a
time.

A serializable schedule is called as given interleaved execution of a -
set of n transactions.

The following conditions hold for each transaction in the set:

1. All transactions are correct i.e. if any one of the transactions is executed by itself on a
consistent database, the resulting database will be consistent.

2. Any serial execution of the transactions is also correct and preserves the consistency of the
database. '

There are two types Serializablity
1. Conflict Serializability

2. View Serializability

5.1 Conflict Serializability

A schedule is conflict serializable if it is conflict equivalent to some
serial schedule. Every conflict serializable schedule is serializable.

Consider that TO and T1 are two transactions and S is schedule for
T0O and T1.Ii and]j are two instructions. If Ii and Jj refer to different
data items then Ii and Ij can be executed in any sequence. But if Ii
and Ij refer to same data items then the order of two instructions may
matter.

Here Ii and [j can be a read or write operation only. There are 4 conditions that need to be |
considered.

1. l[i=Read (X) and [j=Read (X).
The order of Ii and Ij does not matter because both are reading the data.
2. li=Read (X) and j=Write (X). If Ii come before Ij then Ti does not read the value of X that is

written by T1 in Ij. If Ij comes before Ii the TO reads the value of X i.e. written by T1.Thus
order Ii and Ij matters. '

[i=Write (X) and Ij=Read (X) The order of Ii and Ij matters for the same reasons in step 2.

4, li=Write (X) and [j=Write (X). If both are Write operations their order does not affect either in

TO or T1. But if next operation is Read (X) in S then the order is important. If there is no

~ operation after li and [j in S then the order of Ii and Jj directly affects the final value X in the
database that results from schedule.

We say that Ii and Ij conflict if they are operations by different transactions on the same data item
and at least one of these instructions is a Write operation.

Let us see the concept of conflict serializability with example of schedule 1. The Write (X)
instruction of TO conflicts with Read (X) instruction of T1. The Write (X) instruction of T1 does not
conflict with Read (Y) instruction of T1 because they access different data items.

@ _

TO T
Read (X)
Write (Y) Read (X)
Read (Y) Write (X)
Write (Y) Read (Y)
Conflict] |
—T " wite (Y)

Schedule 2 is generated after swapping Write (X) instruction of T1 with Read (Y) instruction of TO.

In the same way we could swap:

1. Swap the Read (Y) instruction of TO with Read (X) instruction of T1.
2. Swap the Write (Y) instruction of TO with Write (X) instruction of T1.
3. Swap the Write (Y) instruction of TO with Read (X) instruction of T1.

The Final Result of these Swaps is shown as Schedule S'.
Schedule §'

(X
Write (X)
- Read (Y)
Write (Y)
Read (X)
Write (X)
Read (Y)
Write' (Y)

If a schedule S can be transformed into a schedule S' by a series of Swaps of non-conflicting
instructions. We call S and S' are Conflict equivalent.

Testing for Conflict Serializability

To check conflict serializablity is to draw a precedence graph for given schedule and if the cycle is
not present in the schedule then we can say that it is conflict serializable schedule.

Precedence graph contain vertices, that is, transactions present in schedule and edges are conflicting
instructions in transactions.

Algorithm can be used to test a schedule for conflict serializability. The algorithm looks at only read
and write operations in a schedule to a construct precedence graph (or serialization graph) which is

...

directed graph G=(N,E) that consists of a set of nodes N={ TO,T1,......,Tn} and a set of directed
edges E={el,e2,.....en)}.

Algorithm: Testing conflict serializability of a schedule S

1. For each transaction Ti participating in schedule S, create a node labeled Ti in the precedence
graph.
2. For each case in S where Tj executes a read (X) after Ti executes a write (X), create an edge

(Ti - Tj) in the precedence graph.

3. For each case in S where Tj executes a write (X) after Ti executes a read (X), create an edge
(Ti — Tj) in the precedence graph.

4, For each case in S where Tj executes a write (X) after Ti executes a write (X), create an edgé
(Ti — Tj) in the precedence graph.

5. The schedule S is serializable if and only if the precedence graph has no cycles.

For example: Consider following transactions

Read (X) | Read (X)
X=X-N X=X+M
Write (X) | Write (X)
Read (Y)
Y=Y+N
Write (Y)

Precedence graph

A precedence graph, also named conflict graph and serializability
graph, is used in the study of database theory within the realm of
- computer science.

The precedence graph for a schedule S contains:

1. A node for each committed transaction in S.

ii. Anarc from Ti to Tj if an action of Ti precedes and conflicts
with one of Tj's actions.

Use of precedence graph

15 .

It is used for checking deadlock. If cycle exists in a graph then there is deadlock in the system.

1. Serial schedule 1 transaction TO followed by T1

Schedule 1

Read (X)

X=X-N

Write (X)

Read (Y)

Y=Y+N

Write (Y)
Read (X)
X=X+M
Write (X)

(3 ==

Precedence graph for serial schedule 1

2. Serial schedule 2 transaction T1 followed by T0

Schedule 2

Read (X)

X=X+M

Write (X}
Read (X)
X=X-N
Write (X)
Read (Y)
Y=Y+N
Write (Y)

O3

Precedence graph for serial schedule 2

3. Non- serial schedule 3 transaction T0 followed by T1

ead x)

X=X-N
Read (X)
X=X+M
Write (X)
Read (Y)
Write (X)
Y=Y+N
Write (Y)

o
- S
Precedence graph for non-serial schedule 3 (not Serializable)

4. Non- serial schedule 4 transaction T0 followed by T1

Schedule 4

Read (X)

X=X-N

Write (X)
Read (X)
X=X+M
Write (X)

Read (Y)

Y=Y+N

Write (Y)

==

‘Precedence graph for non-serial schedule 4(Serializable)

5.2 View Serializability

A schedule S is view serializability if it is view equivalent to a serial schedule. Every conflict
serializable schedule is also view serializable but there are view serializable schedules that are not
conflict serializable.

Consider two schedules S and S'. The schedules S and S’ are said to be view equivalent if the
following three conditions hold '

1. For each data item X if transaction Ti reads the initial value of X in schedule S, then
transaction Ti must in schedule S' also read the initial value of Q.

2. For each data item X, if transaction Ti executes Read (A) in schedule S and that value was
produced by transaction, Ti must in schedule S’ also read the value of X that was produced by
transaction Tj.

3. For each data item X, the transaction that performs the final Write (X) operation in schedule S
must perform the final Write (X) operation in schedule S'.

A condition 1 and 2 ensures that same value is read in both the schedules. Condition 3 together with
1 and 2 ensures that final result is same.

For example: Following schedule is a view serializable schedule

(x L
Write (X)
Write (X)

Write (X)

It is View Equivalent to the serial schedule <T0, T1, T2> since the Read (X) instructions reads the
" initial value of X in both schedules and T2 performs the final write of X in both schedules.

In above example Transactions T1 and T2 perform Write (X) operations without having performed a
Read (X) operation. Write of this sort are called blind write. Blind write appear in any view
serializable schedule that is not conflict serializable.

6. Recoverability

We have studied that schedules are acceptable from the viewpoint of consistency of the database,
assuming implicitly that there are no transaction failures. We now address the effect of transaction
failures during concurrent execution.

If transaction Ti fails for whatever reason we need to undo the effect of this transaction to ensure the
atomicity property of the transaction. In a system that allows concurrent execution it is necessary
also to ensure that any transaction Tj that is dependent on it is also aborted. To achieve this surety we
need to place restrictions on the type of schedules permitted in the system. In the following two
subsections we address the issue of what schedules are acceptable from the viewpoint described.

6.1 Recoverable Schedule

A recoverable schedule is one where for each pair of transaction Ti and Tj such that Ti reads the data
item previously written by Ti the commit operation of Ti appear before commit operation of Tj.

Consider schedule shown in which TO is a transaction that performs only one instruction Read (A).
Suppose that the system allows T1 to commit immediately after executing the Read (A) instruction.
Thus T1 commits before TO does. Now suppose that TO fails before it commits. Since T1 has read
the value of data item X written by TO we must about T1 to ensure transaction atomicity. However
T1 has already committed and cannot be aborted. Thus we have a situation where it is impossible to
recover correctly from the failure of TO.

Read (X)
Write (X}

Read (X)

7 Read (Y)

In the above schedule with the commit happening immediately after the Read (X) instruction is an
example of non —recoverable schedule, which should not be allowed. Most of the database system
- requires that all schedules be recoverable.

6.2 Cascadless Schedule

Cascadless schedule is recoverable schedule. A single transaction
failure leads to a series of transaction rollbacks, this is called
cascading rollback. A cascadless schedule is one where for each pair
of transaction Ti and such that Tj reads a data item previously
written by Ti, the commit operation of appears before the read
operation of Tj.

Consider a transaction TO writes a value of X that is read by
transaction T1. Transactions T1 writes a value of X that is read by
transaction T2. Suppose that, at this point TO fails, TO must be rolled
back. Since T2 is dependent on T1, T2 must be rolled back. This
event in which a single transaction failure leads to a serial of
transaction rollbacks is called cascading rollback.

[Read (X) |

Read (Y)

Write (X)
Read (X)
Write (X)

Read (X)

Cascading rollback is undesirable, since it leads to undoing of a
significant amount of work. It is desirable to restrict the schedules to
those where cascading rollbacks cannot occur.

Solved Examples

1. Consider the following transaction. Find out two schedules
serializable to serial schedule <T1, T2, T3>

Read (X) Read (Z) Read (Y)

X=X+100 Read (Y) Read (Z)

Wirite (X) Y=Y+Z Y =Y + 50

Read (Y) Write (Y) Write (Y)

Y=Y-100 Read (X} Z=2+Y

Write (Y) X=N-Z Write (Y)
Write (X)

Solution

First we write serial schedule <T1, T2, T3>

Read (X)
X=X+100
Write (X)
Read (Y)
Y=Y-100
Write (Y)

Read (Z)
Read (Y)
Y=Y+Z
Write (Y)
Read (X)
X=N-Z
Write (X)

Read (Y}
Read (Z)
Y =Y + 50
Write (Y)
Z=2+Y
Write (Y)

Serializable schedule 1

X=X+ 100
Write (X)

Read (Y)
Y =Y-100
Write (Y)

Read (2)

Read (Y)
Y=Y+Z
Write (Y)

Read (X)
X=N-Z
Write (X)

Read (Y)

Read (Z)
Y =Y + 50
Write (Y)
Z=2+Y
Write (Y)

Serializable schedule 2

Read (Z)
Read (X)
X=X+100
Write (X)
Read (Y)
Y=Y-100
Write (Y)
Read (Y)
Y=Y+2
Write (Y)
Read (Y)
Read (Z)
Y =Y + 50
Write (Y)
Read (X)
X=N-Z
Write. (X} ,
Z=2Z+Y
Write (Y)

2. Consider the following transaction
Find out non-serial schedule, which is serializable to serial schedule <T1, T2, T3>

Find out non-serial schedule, which is serializable to serial schedule <T3, T1, T2>.

a.
b.

Solution

Read (X) Read (Z) Read (X)
Read (Z) Z=Z+10 Read (Y)
X=n+Z Read (Y) Y=Y-X
Write (X) Y=Y+Z Write (Y)
Write (Z)
Write (Y)

First we write serial schedule <T1, T2, T3>

Read (2)
Z=2Z+10
Read (Y)
Y=Y+2Z
Write (Z)
Write (Y)

Read (X)

Read (Y)
Y =Y -X
Write (Y)

Read (X)

Read (Z) :
Read (2Z)
Z=2+10
X=n+Z
Write (X)
Read (Y)
Y=Y+Z Read (X}
Write (Z)
Write (Y)
Read (Y)
Y=Y-X
Write (Y)

Non-serial schedule for serial <T1, T2, T3>

Read (X)
Read (Z)
X=n+Z
Read (Z)
Z=Z+10
Read (Y)
Write (X)
Y=Y+2Z
Write (Z)
Read (X)
Write (Y)
Read (Y)
Y=Y-X
Write (Y)

Read (X)
Read (Y)
Y=Y-X
Write (Y)

First we write serial schedule <T3, T1, T2>

Read (X)
Read (2Z)
X=n+Z
Write (X)

Read (Z)
Z=2+10
Read (Y)
Y=Y+2Z
Write (Z)
Write (Y)

Non-serial schedule for serial <T3, T1, T2>

Read (X)
Read (X)
Read (Z)
Read (Z)
Z=2+10
Read (Y)
Read (Y)
Y=Y -X
Write (Y)
Y=Y+Z
Write (Z)
Write (Y)
X=n+Z
Write (X)

3. Consider the following transaction. Give at least 2 serial schedules.

Solution

Read (A) Read (A)
A=A -50 t=A*0.1
Write (A) A=A-t
Read (B) Write (A)
B=B+50 Read (B)
Write (B) B =B +
Write (B)

Suppose we consider Transaction TO followed by Transaction T1.
Serial Schedule 1

Write (A)
Read (B)
B =B + 50
Write (B)

Read (A)
t=A*0.1
A=A-t
Write (A)
Read (B)
B=8B +
Write (B)

Suppose we consider Transaction T1 followed by Transaction TO

Serial Schedule 2

Read (A)
t=A*0.1
A=A-t
Write (A)
Read (B)
B=B +t
Write (B
Read (A)
A=A-50
Write (A)
Read (B)
B =B +50
Write (B)
4. Consider the following transaction. Find out concurrent schedule, which.is serializable to
serial schedule <T0, T1>
Read (A) Read (A)
A=A -50 t=A*0.1
Write (A) A=At
Read (B) Write (A)
B =B + 50 Read (B)
Write (B) B=B +
Write (B)
Solution

Following schedule is called as concurrent, which i

bl

Read (A)

A=A -50

Write (A)
Read (A)
t=A*0.1
A=A-t
Write (A)

Read (B)

B =B + 50

Write (B) Read (B)
B =B +t
Write (B)

523

5. Consider following transactions. Give two Non-serial
Schedules that are serializable

Solution

" Read(X)

X=X-1000
Write(X)
Read(Y)

Y=Y+1000
Write(Y)

Read(Y)
Y=Y+5000

Write(Y)
Read(Z)
Z=Z+5000
Write(Z)

Read(X}
X=X-1000
Write(X)

Read(Y)
Y=Y+1000
Write(Y) .

Read(Y)
Y=Y+5000
Write(Y)

Read(Z)
Z=7+5000
Write(Z)

Read(X)
=X-1000
Write(X)

Read(Y)
Y=Y+1000
Write(Y)

Read(Y)
Y=Y+5000
Write(Y)
Read(Z)
Z=Z+5000
Write(Z)

6. Consider the following Transactions. Give two Non-serial
rializable:

Read(X)
X=X+10
Write(X)
Read(Y)
Y=Y+20
Write(Y)
Read(Z)
Z=Z+30
Write(Z)

Read(Y)
Y=Y-10
Write(Y)
Read(Z)
Z=7-20
Write(Z)

Solution

Following are the two schedules which are serializable.

Read(Y)
Y=Y+20
Write(Y)

Read(Z)
Z=Z+30
Write(Z)

Read(Y)
Y=Y-10
Write(Y)

Read(Z)
Z2=2-20
Write(Z)

Read(X)
X=X+10
Write(X)

Read(Y)
Y=Y+20
Write(Y)
Read(Z)
Z=Z+30
Write(Z)

Read(Y)
Y=Y-10
Write(Y)

Read(Z)
Z=2-20
Write(2)

7. Consider the following Non-serial Schedule

Read(X)
X:=X+N
Write(X)
. Read(Y)
Write(X)
Y:=Y+N
Write(Y)
Is the schedule serializable to a serial schedule <Ty, T, >?
Solution
i First we draw serial schedule T, T,

Read(X)

X=X-N

Write(X)

Read(Y)

Y=Y+N

Write(Y)
Read(X)
X=X+N
Write(X)

In the given non serial schedule Read(X) of T, reads the original value of X where in serial
schedule <T,, T,>read(X) of T reads the value updated by Write(X) of T;. Thus the order of
conflicting instructions is not same in both the schedules. Thus, the given non serial schedule
is not serializable.

ii. We can draw precedence graph for given non serial schedule. There exists a cycle in the graph
so given non serial schedule is not serializable.
L X
T1 TZ

8. Consider the following transaction.

Read(A)
A=A-T70
Write (A) A=A-t
Read(B) Write (A)
B:=B+70 Read(B)
Write(B) B=B+t
Write(B)

Give at least two serial schedules.

Solution
Non serial schedule S;:

Non serial schedule S,:

Solution

The schedules S; and S, shown below can be 2 non serial schedules that are
schedule.

Read(A)
A=A-70
Write(A)
Read(A)
t=A*0.1
A=At
Write(A)
Read(B)
B=B+70
Write(B)
Read(B)
B=B+t
Write(B)

Read(A)
A=A-70
Write(A)
Read(A)
Read(B)
=A*0.1
A=At
Write(A)
B=B+70
Write(B)
Read(B)
B=B+t
Write(B)

Consider the following transactions. Find out two
concurrent schedule, which will be serializable to serial
schedule <T;,T,>:

Read (A) Read (B)
A=A-T70 B:=B+10
Write (A) Write (B)
Read (B) Read (C)
B:=B+70 C=C+50
Write (B) Write (C)

serializable to given

Following is schedule S,

Following is schedule S,

Read (A)
A=A-T70
Write (A)

Read (B)
B:=B+70
Write (B)

Read (B)
B:=B+10
Write (B)

Read (C)
C:=C+50
Write (C)

Read (A)
A=A -T70
Write (A)
Read (B)
B:=B+70
Write (B)

Read (B)

B:=B+10
Write (B)
Read (C)
C:=C+50
Write (C)

10. Consider the following transaction. Give

schedules that are serializable.

Solution

The schedules S1 and S2 shown below can be 2 non serial schedules that are serializable to given

schedule.

two non serial

Write(A) Write(X)
Read(B) Read(B)
Read(C) B=B-20
B=B+10 Write(B)
Write(B)
C=C+15
Write(C)

Following is schedule S;:

Following is schedule S,:

Read(X)
X=X-10
Write(X)
Read(B)
B=B-20
Write(B)

Read(A)

A=A+5

Write(A)

Read(B)

Read(C)

B=B+10

Write(B)

C=C+15

Wirite(C)

Read(A)

A=A+5

Write(A)
Read(X)
X=X-10
Write(X)

Read(B)

Read(C)

B=B+10

Write(B)
Read(B)
B=B-20
Write(B)

C=C+15

Write(C)

11. Consider the following transaction. Find out a non serial
schedule which is serializable to serial schedule <T;,T,,T;>

Read(X) | Read(X) | Read(Z)
Read(Y) | Read(Z) | Read(Y)
Y=Y-X | X=X+Z | Y=Y+Z
Write(Y) | Write(X) | Write(Y)

Solution
Non serial schedule S;:

Non serial schedule S,:

Read(X)
Read(X)
Read(Z)
X=X+Z
Write(X)
Read(Y)
Y=Y-X
Write(Y)
Read(Z)
Read(Y)
Y=Y+Z
Write(Y)

Read(X)
Read(X)
Read(Z)
Read(Y)
Y=Y-X
Write(Y)
Read(Y)
Y=Y+Z
Write(Y)
Read(Z)
X=X+Z
Write(X)

12. Consider the following transaction. Give two non-serial schedules that are serializable.

Solution
First schedule S,

read (x)
X=X~m
write (x)
read (y)
y=y+m
write (y)

read (x)
X=X+n
write (x)

Second schedule S;

X=X-m

write (x)
read (x)
X=X+n
write (x)

read (y)

y=y+m

write (y)

X=X-m
write (x)
read (x)
X=x+n
read (y)
y=y+m
write (y)
write (x)

13. Consider the following transaction. Find out a non serial schedule which is serializable to

serial schedule <T, T,, T;>:

Solution

Two non serial schedules S;, S, that are serializable to above serial schedule <T,, Ty, T3> are as

follows.

read (x) read (z) | read (y)
x=x+100 | read (y) | read (z)
wiite (X) |y=y+z|y=y+50
read (y) write (y) | write (y)
y=y—-100 | read (X} | z=z+y
write (y) | x=n-z | write (y)
write (x)

_Non serial schedule S,

No serial schedule S

read(x) read(x)
x=x+100 x=x+100
write(x) write(x)
read(z) | read(y)
read(x) y=y-100
X=X-Z write(z)
write(x) read(y)
read(y) y=y+z
y=y-100 write(y)
write(z) read(y)
read(y) read(z)
y=y+z y=y+50
write(y) write(y)
read(y) read(x)
read(z) X=X-Z
y=y+50 z=z+y
write(y) write(z)
z=z+y write(x)
write(2)

14. Consider the following transactions.

ead(x) Read(y)
X =x+ 1000 y=y-500
Write(x) Write(y)
Read(y) Read(z)
=y + 1000 z=2z-500
Write(y) Write(z)

Give two non serial schedules that are serializable.

Solution

3-31

Read(x)
x =x+ 1000
Write(x) .
Read(y)
y=y-500
Write(y)
Read(y)
y=y+ 1000
Write(y)
Read(z)
z=2-500
Write(z)
Read(x)
x=x+ 1000
Write(x)
Read(y)
y=y-500
Wirite(y)
Read(z)
z=2z-500
Write(z)
Read(y)
y=y+ 1000
Write(z)

15. Consider the following tra

Read(x) Read(z)

Read (z) z=2z+100
X=X+2Z Write(z)
Write(x) Read(y)

y=y+200
Write(y)
Give two non serial schedules that are serializable.
Solution
Read(x) Read(z)
Read(z) z=z+100
x=x+z| Write(z)
Read(z) Read(x)}
z=2z+ 100 Read(z)
Write(z) Read(y)
Read(y) i y =y + 200
y=y+200 » Write (y)
Write (y) X=x+2z
Write (x) Write(x)

Oct.2015 — 2M)

[Apr.2015 — 2M]
[Apr.15.12 — 2M]
[Apr.15.11- 2M]
[Oct.14.11.09.Apr.11 - 2M)]
[Oct.2014 — 2M]

[Oct.2012 - 2M}

[Oct.12.10.Apr.12,11 - 2M]
[Apr.12.10 - 2M1
[Oct.11.Apr.10,09 — 2M]

[Oct.2015 — 4M]

[Oct.2015 — 4M]

[Oct.2015 — 4M]
[Oct.2015 — 4M]

[Apr.15.0¢t.11 ~ 4M]
[Apr.15,0¢t.11 — 4M]

PU Questions

e SR I o e

e

[

N kAW

What is transaction? State operations performed on transaction.
Define Recoverable schedule.

Define: i. commit ii. Rollback

What is serializability? List the types of serializability.

What is schedule? Give types of schedule.

What is a precedence graph?

What is Cascadeless schedule?

What is Transaction? List Properties of Transaction.

What is Serializability?

List the states of transaction.

onsider the fo owin .transactlons. Find out tow non-seria
schedules that are serializable.

x=x+10 Read (y)
Write (x) y=y-z
Read (y) Write (y)
y=y-10 Read (x)
Write (y) X=X+2z
Write (x)
Consider the following non-serial schedules. Is this schedule

serializable?

Read (A)

Read (A)

Write (A)

Read (A)
Write (A)
Explain various states of transaction in detail.

What is Schedule? Explain types of schedule with example.
What are the various problems that occur in concurrent
transaction?

What is transaction? Explain ACID properties of transaction.
Consider the following transactions. Give two non-serial
schedules that ializabl

Read (A) Read (C) | Read (B)

A=A+100 | Read (B) | B =B + 200
Write (A) B=B+C | Write (B)
Read (B) | Write (B) | Read (C)
B=B + 100 | Read (A) | C=C + 200
Write (B) A=A-C | Write (C)
Wirite (A)

10.
11.
12.

14.

Consider the following transactions. Give two non-serial schedules
that are serializable.

ey
Read (A Read (C) | Read (B)
A=A+100 | Read (B) | B=B + 200
Write (A) B =B+ C | Write (B)
Read (B) Write (B) [Read (C)
B=B+100 | Read (A) [C=C+200
Write (B) A=A-C | Wrte (C)
Write (A)

Consider the following transactions. Give two non-serial schedules
that are serializable.

Wirite (A) Write (A)
Read (BC) Read (B)
C=C-1000 | B=B-1000
Write (C) Write (B)
Read (B)

B =B + 1000

Wirite (B)

Explain ACID properties of transaction in detail.
Explain recoverable schedule and cascadeless schedule with example.

Consider the followi_n transactions.

-

Roady)

Read(x)

x=x+1000 | y=y-500
Write(x) Write(y)
Read(y) Read(z)
y=y+1000 | z=z-500
Write(y) Write(z)

Give two non serial schedules that are serializable.
Consider the following transactions.

a() T
Read (2)
X=X +2z | Write(z)
Write(x) [Read(y)
y=y+200
Write(y)
Give two non serial schedules that are serializable.

Consider following the transactions. Give two Non-serial Schedules

that are serializable:

Read(X) Read(Y)
X=X-1000 | Y=Y+5000
Write(X) Write(Y)
Read(Y) Read(Z)
Y=Y+1000 | Z=Z+5000
Write(Y) Write(Z)

[Apr.2015 — 4M]

[Apr.2015 — 4M]

[Oct. 14, Apr.12 — 4M]
[Oct. 14,10 — 4M]
[Oct.2014 — 4M]

[Oct.2014 — 4M]

[Oct.2012 — 4M]

[Oct.2012 — 4M] 15.

[Apr.12,0ct.11,09—4M] 16.

[Apr.2012 — 4M] 17.
[Oct.2011 — 4M] 18.
[0ct.2011 — 4M) 19.
[Apr.11, Oct10,09-4pg 20
[Apr.2011 — 4M] 21.

Consider the following Transactions. Give two Non-serial
schedules that are serializable: :

Read(X) | Read(Y)
X=X+10 | Y=Y-10

Write(X) | Write(Y)
Read(Y) | Read(Z)
Y=Y+20 | Z=Z-20

Write(Y) | Write(Z)
Read(Z)
2=Z+30
Write(Z)

Consider the following Non-serial Schedule

Read(X)
X:=X-N
Read(X)
X:=X+N
Write(X)
Read(Y)
Write(X)
Y:=Y+N
Write(Y)

Is the schedule serializable to a serial schedule <T, T, >?
Consider the following transaction

Read(A) Read(A)

A:=A-T70 t=A"0.1
Write (A) A=A-t
Read(B) Write (A)

B:=B+70 Read(B)
Write(B) B=B+t

Write(B)

Give atleast two serial schedules.

Explain different types of Failure.

Consider the following transactions. Find out two concurrent
schedule, which will be serializable to serial schedule <T,T,>:

Read (A) Read (B)
A:=A-70 B:=8+10
Write (A) Write (B)
Read (B) Read (C)
B:=B +70 C:=C +50
Write (B) Write (C)

What is transaction? Explain states of transaction with
diagram.

Explain concurrent execution of transaction with example and
advantages of concurrent execution.

1-

Chapter &
CONCURRENCY

CONTROL

Concurrency Control

Concurrent execution of multiple transactions causes several complications with the consistency of
data and may result in some inconsistent database whereas serial execution of transactions is much
easier to implement and maintain the consistency of database.

There are two reasons for using concurrency.
L.

A transaction consists of multiple steps. Some involve /O activity (Read/Write) others
involve CPU activity. The CPU and disks in computers can operate in parallel. Therefore, /O
activity can be done in parallel with processing at CPU. This can be used to run multiple
transactions in parallel. This concurrent execution of transactions increases the throughput of
system i.e. it will increase the number of transactions that can be executed in a given amount
of time.

The processor running on the system may differ in execution time i.e. some short and some
long transactions. If transactions are running serially a short transaction may have to wait for a
preceding long transaction to complete, which can lead to unpredictable delays in running a
transaction. If the transactions are on different parts of database, it is better to run them
concurrently, sharing the CPU cycles and disk accesses among them. It reduces the
unpredictable delay in running the transaction.

2.

-

Lock Based Protocols

One way to ensure serializability is to require that data items be accessed in a mutually exclusive
manner, that is, while one transaction is accessing a data item, no other transaction can modify that
data item. The most common method used to implement this requirement is to allow a transaction to
access a data item only if it is currently holding a lock on that item. -

2.1

Locks

A lock is a variable associated with the data item that describes the
status of the item with respect to possible operations that can be
applied to the item. Generally there is one lock for each data item in
the database, which is, used to synchronise the access by concurrent
transactions to the database. There are various modes in which a data
item may be locked.

Types of Lock

1.

Binary Locks: A binary lock can have two stages or values.

1. Lock state (1)
ii. Unlock state (0)

If the value of the lock on X is 1 then item X cannot be accessed by a database operation that
requests the item. If the value of the lock on X is 0 the item can be accessed by a databasc
when requested.

Two operations lock item and ﬁnlocked item are used in binary locking.

A transaction requests access to an item X by first requesting a lock (X) operation. If X is
locked by another transaction then the transaction is forced to wait and if X is not already
locked by any other transaction then the transaction is allowed to access item X. When the
transaction finishes it’s processing on item X it should unlock the item X.

For a binary locking scheme every transaction must follow the rules below:
i A transaction T must issue the operation lock (X) before any read (X) or write (X)
operations are performed in T.

ii. Transactions T must issue the operation unlock (X) after all read (X) and write (X)
operations are completed in T.

iii. A transaction T will not issue a lock (X) operation if it already holds the lock on X.
iv. A transaction T will not issue an unlock (X) operation unless it already holds the lock on X.

Lock and unlock operations must be implemented as indivisible units i.e. no interleaving
should be allowed once a lock or unlock operation is started until the operation terminates or
the transaction waits.

Shared or Exclusive Lock

Shared: If a transaction Ti has obtained a shared-mode lock (denoted by S) on item Q, then Ti
can read, but cannot write Q. The shared lock is also called a read lock.

The intention of this mode of locking is to ensure that the data item does not undergo any
modifications while it is locked in this mode. Any number of transactions can concurrently
lock and access a data-item in the shared mode, but none of these transactions can modify the -
data-item.

Exclusive: If a transaction Ti has obtained an exclusive-mode lock (denoted by X) on item Q,
then Ti can both read and write Q. The exclusive lock is also called an update or a write lock.

The intention of this mode of locking is to provide exclusive use of the data-item to one
transaction. If a transaction T locks a data-item Q in an exclusive mode, no other transaction
can access Q, not even to read Q, until the lock is released by transaction T.

We require that every transaction request a lock in an appropriate mode on data item Q,
depending on the types of operations that it will perform on Q. The transaction makes the
request to the concurrency control manager. The transaction can proceed with the operation
only after concurrency control manager grants the lock to the transaction.

Share/Exclusive locking scheme must follow the rules.

1. A transaction T must issue the operation read lock (X) or write lock (X) before any
read (X) operation is performed in T.

ii. A transaction T must issue the operation write lock (X) before any write (X)
operation is performed in T.

iii. A transaction T must issue the operation unlock (X) after all read (X) and write (X)
operations are completed in T.

iv. A transition T will not issue read lock (X) operation if it already holds a read lock (X)
or a write lock (X).

v. A transaction T will not issue write lock (X) operation if it already holds a read lock (X)
or write lock (X)

vi. A transaction T will not issue an unlock (X) operation unless it already holds a read
lock (X) or write lock (X).

2.2 Granting of Locks

When a transaction requests a lock on a data-item in a particular mode, and no other transaction has
a lock on the same data-item in a conflicting mode, the lock can be granted. However, care must be
taken to avoid the following scenario. Suppose a transaction T2 has a shared mode lock on a data-
item and another transaction T1 request an exclusive-mode lock on the data-item. Clearly T1 has to
wait for T2 to release the shared-mode lock. Meanwhile, a transaction T3 may request a shared-
mode lock on the same data-item. The lock request is compatible with the lock granted to T2, so T3
may be granted the shared mode-lock. At this point T2 may release the lock, but still T1 has to wait
for T3 to finish. But again, there may be a new transaction T4 that requests a shared-mode lock on
the same data-item, and is granted the lock before T3 releases it. In fact, it is possible that there is a
sequence of transactions that each requests a shared-mode lock on the data-item, and each
transaction releases the lock a short while after it is granted, but T1 never gets the exclusive-mode
lock on the data-item. The transaction T1 may never make progress, and is said to be starved.

We can avoid starvation of transactions by granting locks in the following manner: When transaction
T1 requests a lock on a data-item Q in a particular mode M, the concurrency-control manager grants
the lock provided that

1. There is no other transaction holding a lock on Q in a mode that conflict
with M.

2. There is no other transaction that is waiting for a lock on Q and that made its lock request
before Ti.

Thus, a lock request that is made later will never block a lock request.

2.3 Two-Phase Locking Protocol

One protocol that ensures serializability is the two-phase locking
protocol. This protocol requires that each transaction issue lock and
unlock requests in two phases:

1. Growing phase: A transaction may obtain locks, but may not
release any lock. ‘

2. Shrinking phase: A transaction may release locks, but may
not obtain any new locks.

In the beginning, a transaction is in the growing phase. The
transaction acquires locks as needed. Once the transaction releases a
lock, it enters the shrinking phase, and it can issue no more lock
requests. Two-phase locking protocol ensures conflict serializability.

Consider any transaction. The point in the schedule where the
transaction has obtained its final lock (the end of its growing phase)
is called the lock point of the transaction. At this moment
transactions can be ordered according to their lock points. This
ordering is the serializability ordering for the transactions.

Two phase locking does not ensure freedom from deadlock.

Example: Following two transactions are two phase transactions

lock =X (B) | lock — S (A)
lock —X (B) | read (A)
B=B-50 | lock-S (B)
write (B) read (B)

lock X (A) | display (A +B)
A=A+50 | unlock (A)
Write (A) unlock (B)
unlock (B)

unlock (A)

Transaction T1 and T2 are two phase but they are deadlocks.

lock =X (B)

read (B)

B=B-50

write (B)
lock - S (A)
read (A)
lock - S (B)

lock - X (A)

read (A)

A=A+50

Write (A)

unlock (B)

unlock (A)
read (B)
display (A +B)
unlock (A)
unlock (B)

(S — Shared, X- Exclusive locks)

Here T1 has a X lock and T2 wants a S on B and T2 has a S lock and T1 wants a X on A.

The two-phase locking protocol also has the cascading rollback. The cascading rollback can be
avoided by the variation of two-phase locking protocol called strict two-phase locking protocol. It
has two phases as it also needs that all exclusive mode locks taken by a transaction should be held
until that transaction commits, because of which cascading rollbacks does not occur.

Another variation of two-phase locking protocol is rigorous two-phase locking protocol. It has two
phases. In addition it requires that all locks be held until the transaction commits. Most database
systems implement either strict or rigorous two phase locking.

Consider the following two transactions T1 and T2

Read (X1)
Read (X2)

Read (Xn)
Write (X1)

Read(X1)
Read(X2)
Display (X1 + X2)

If we use the two-phase locking protocol, then T1 must lock X1 in exclusive mode for any
concurrent execution of both transactions to a serial execution. But T1 needs an exclusive lock on
X1 only at the end of its execution, when it writes X1. Therefore, if T1 could initially lock X1 in
shared mode, and then could later change the lock to exclusive mode, we could get more
concurrency, since T1 and T2 could access X1 and X2 simultaneously.

This observation leads to the basic two-phase locking protocol, in which lock conversion are
allowed, upgrading a shared lock to an exclusive lock, and downgrading an exclusive lock to a
shared lock. Lock conversion cannot be allowed at any time. Upgrading can take place in only the »
growing phase, whereas downgrading can take place in only the shrinking phase.

i. Upgrading: In growing phase of 2PL, transaction may issue a lock on database item.
Transaction can acquire shared lock on database item. Transaction can also acquire exclusive

®
_ "
lock on database item. Converting shared lock on exclusive lock on same database item is
called as upgrading.

ii. Downgrading: In shrinking phase of 2PL, transaction release a lock on database item.
Transaction can release shared lock on database item. Transaction can also release exclusive
lock on database item. Converting exclusive lock on shared lock on same database item is
called as downgrading.

jii. Lock point: In 2phase locking protocol, required data base items are locked in advance and
operations on the data base items are performed. So the “Lock Point” is when all locks are
held for the whole transaction in growing phase. Following diagram shows the lock point.

Consider the following example for upgrade and downgrade.

lock —S (X1)
lock — S (X1)
lock =S (X2)
lock — S (X2)
lock =S (X3)
lock ~S (X4)
unlock (X1)
unlock (X2)
lock =S (Xn)
upgrade (X1)

Example for upgrade and downgrade

The database systems automatically generate the lock and unlock instructions for a transaction on the
basis of read and write requests from the transaction.

1. When a transaction Ti issues a read (Q) operation the system issues a lock-S (Q) instruction
followed by the read (Q) instruction.

2. When Ti issues a write (Q) operation the system checks if Ti already holds a shared lock on Q.
If it does the system issues an upgrade (Q) instruction followed by the write (Q) instruction.
Otherwise the system issues a lock X (Q) instruction followed by the write (Q) instruction.

3. All locks obtained by a transaction are unlocked after that transaction commits or aborts.

For a set of transactions, there may be conflict-serializable schedules that cannot be obtained through
the two-phase locking protocol. However, to obtain conflict-serializable schedules through non-two-
phase locking protocols, we need either to have additional information about the transaction or to
impose some structure or ordering on the set of data items in the database. In the absence of such

information, two-phase locking is necessary for conflict serializability. If Ti is a non-two-phase
transaction, it is always possible to find another transaction Tj that is two phases so that there is
schedule possible for Ti and Tj that is not conflict serializable.

Strict two-phase locking and rigorous two-phase locking (with lock conversions) are used
extensively in commercial data base systems.

3.' Timestamp-Based Protocols

The locking protocols that have been described thus far determine the order between every pair of
conflicting transactions at execution time by the first lock that both members of the pair request that
involves incompatible modes. Another method for determining the serializability order is to select an
ordering among transactions in advance. The most common method for doing so is to use a
timestamp-ordering scheme.

3.1 Timestamp

A timestamp is a unique identifier created by the DBMS to identify a transaction. Timestamp values
are assigned in the order in which the transactions are submitted to the system, so a timestamp can be
thought of as the transaction start time. We will refer to the timestamp of transaction T as TS (7).
Concurrency control techniques based on timestamp ordering do not use locks, thus deadlocks
cannot occur.

With each transaction Ti in the system, we associate a unique fixed timestamp, denoted by TS (Ti).
This timestamp is assigned by the database system before the transaction Ti starts execution. If a
transaction Ti has been assigned timestamp TS (Ti), and a new transaction Tj enters the system,
then TS (Ti) <TS (Tj). There are two simple methods for implementing this scheme:

1. Use the value of the system clock as the timestamp; that is, a transaction’s time stamp is equal
to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been assigned; that is, a
transaction’s timestamp is equal to the value of the counter when the transaction enters the
system.

The timestamps of the transactions determine the serilizability order. Thus, if TS (Ti) <TS (Tj), then
the system must ensure that the produced schedule is equivalent to a serial schedule in which
transaction Ti appears before transaction Tj.

To implement this scheme, we associate with each data item Q two
timestamp values:

1. W-timestamp (Q) denotes the largest timestamp of any
transaction that executed write (Q) successfully.

2. R-timestamp (Q) denotes the largest timestamp of any
transaction that executed read (Q) successfully.

These timestamps are updated whenever a new read (Q) or write (Q) instruction is executed.

3.2 Timestamp-Ordering Protocol

The timestamp-ordering protocol ensures that any conflicting read and write operations are executed
in timestamp order. This protocol operates as follows:

1. Suppose that transaction Ti issues read (Q).

a. If TS (Ti) < W-timestamp (Q), then Ti needs to read a value of Q that was already
overwritten. Hence, the read operation is rejected, and Ti is rolled back.

b. If TS (Ti) >= W-timestamp (Q), then the read operation is executed, and R-timestamp
- (Q) is set to the maximum of R-timestamp (Q) and TS (T1)

2. Suppose that transaction Ti issues write (Q).

a. If TS (Ti) < R-timestamp (Q), then the value of Q that Ti is producing was needed
previously, and the system assumed that value would never be produced. Hence, the
system rejects the write operation and rolls Ti back.

b. If TS (Ti) < W-timestamp (Q), then Ti is attempting to write an obsolete value of Q.
Hence, the system rejects this write operation and rolls Ti back.

c. Otherwise, the system executes the write operation and sets W-timestamp (Q) to
TS (Ti).

If a transaction Ti is rolled back by the concurrency-control scheme as result of issuance of either a
read or write operation, the system assigns it a new timestamp and restarts it.

To illustrate this protocol we consider transactions TO and T1. Transaction TO displays the contents
of Account X and Y.

Read (X)
Display (X +Y)

Transaction T1 transfers Rs.50 from account X and then displays the contents of both.

Read (Y)
Y=Y-50
Write (Y)
Read (X)
X=X+50
Write (X)
Display (X+ Y)

In presenting schedules under the timestamp protocol we shall assume that a transaction is assigned a
timestamp immediately before its first instruction. Thus in schedule I TS (T0) < TS (T1) and the
schedule is possible under the timestamp protocol.

We note that preceding execution can also be produced by the two-phase locking protocol. There are
however schedules that are possible under the two-phase locking protocol, but are not possible under
the timestamp protocol and vice versa.

Schedule 1

ead (Y)

Read (Y)
Y=Y-50
Write (Y)

Read (X)
Read (X)
Display (X +Y)
X=X+50
Write (X)
Display (X +Y)

The timestamp ordering protocol ensures conflict serializablity. This is because conflicting
operations are processed in timestamp order. The protocol ensures freedom from deadlock since no
transaction ever waits.

The protocol can generate schedules that are not recoverable; however it can be extended to make
the schedule recoverable.

It can be done in following ways

1. Recoverability and cascadlessness can be ensured by performing all writes together at the end
of the transactions. The writes must be atomic i.e. while the writes are in progress no
transaction is permitted to access any of the data items that have been written.

2. Recoverability and cascadlessness can also be guaranteed by using a limited form of locking
whereby reads of uncommitted items are postponed until the transaction that updated the item
commits.

3. Recoverability alone can be ensured by tracking uncommitted writes and allowing a
transaction Ti to commit only after the commit of any transaction that wrote a value of Ti
read. '

3.3 Thomas write rule

A modification of the basic timestamp ordering protocol known as Thomas write rule.
- Consider the following schedule.

Schedule 1

read (Q)

write (Q)

write (Q)

Let us consider schedule 1 and apply the timestamp ordering protocol.

We assume that TS (T1) < TS (T2). The read (Q) operation of T1 succeeds, as does the write (Q)
operation of T2. When T1 attempts its write (Q) operation, we find that TS (T1) < W-timestamp (Q),
since W-timestamp (Q) = TS (T2). Thus; the write (Q) by T1 is rejected and transaction T1 must be
rolled back.

The rollback of T1 is required by the timestamp ordering protocol, it is unnecessary. Since T2 has
already written Q, the value that T1 is attempting to write is one that will never need to be read. Any
transaction Ti with TS (Ti) < TS (T2) that attempts a read (Q) will be rolled back, since TS (T1) <W-
timestamp (Q). Any transaction Tj with TS (Tj) > TS (T2) must read the value of Q written by T2,
rather than the value written by T1.

This observation leads to a modified version of the timestamp-ordering protocol in which obsolete
write operations can be ignored under certain circumstances. The protocol rules for write operations,
however, are slightly different from the timestamp-ordering protocol. Thomas write rule as follows.

_ _

Suppose that transaction Ti issues write (Q):

1. If TS (Ti) < R-timestamp (Q), then the value of Q that Ti is producing was previously needed,
and it had been assumed that the value would never be produced. Hence, the system rejects the
write operation and rolls Ti back.

2. If TS (Ti) < W-timestamp (Q), then Ti is attempting to write an obsolete value of Q. Hence,
this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp (Q) to TS (Ti).

Thomas’ write rule makes use of view serializability by, in effect, deleting obsolete write operations
from the transactions that issue them. This modification of transactions makes it possible to generate
serializable schedules that would not be possible under the other protocols. For example, schedulel
is not conflict serializable and, thus, is not possible under the two-phase locking protocol, the tree
protocol, or the timestamp-ordering protocol. Under Thomas’ write rule, the write (Q) operation of
T1 would be ignored. The result is a schedule that is view equivalent to the serial schedule <T1, T2>.

4. Validation-Based Protocols

There are three phases:

In timestamp ordering the transaction timestamp is checked against
the read and write timestamps of the item. Such checking represents
overhead during transaction execution with the effect of slowing
down the transactions.

In optimistic concurrency control techniques also known as
validation or certification techniques no checking is done whilé the
transaction is executing. Updates in the transaction are not applied
directly to the database items until the transaction reaches its end.
During transaction execution all updates are applied to local copies
of the data items that are kept for the transaction.

At the end of transaction execution a validation phase checks
whether any of the transaction updates violate serializablity. Certain
information needed by the validation phase must be kept by the
system, If serializablity is not violated the transaction is committed
and the database is updated from the local copies otherwise the
transaction is aborted and then restarted later.

1. Read phase: During the phase, the system executes transaction Ti. It reads the values of
various data items and stores them in variables local to Ti. It performs all write operations on
temporary local variables, without updates of the actual database.

2. Validation phase: Transaction Ti performs a validation test to determine whether it can copy
to the database the temporary local variables that hold the results of write operations without
causing a violation of serializability.

3. Write phase: If transaction Ti succeeds in validation (step2), then the system applies the
actual updates to the database. Otherwise, the system rolls back Ti.

To perform the validation test, we need to know when the various phases of transactions Ti took
place. We shall, therefore, associate three different timestamps with transaction Ti:

1. Start (Ti), the time when Ti started its execution.
2. Validation (Ti), the time when Ti finished its read phase and started its validation phase.
3. Finish (Ti), the time when Ti finished its write phase.

We determine the serializability order by the timestamp-ordering technique, using the value of the
timestamp Validation (Ti). Thus, the value TS (Ti) =Validation (Ti) and, if TS (Tj) < TS (Tk), then
any produced schedule must be equivalent to a serial schedule in which transaction Tj appears before
transaction Tk. The reason we have chosen Validation (Ti), rather than Start (Ti), as the timestamp
of transaction Ti is that we can expect faster response time provided that conflict rates among
transactions are indeed low.

The validation test for transaction Tj requires that, for all transactions Ti with TS (Ti) < TS (Tj), one
of the following two conditions must hold:

1. Finish (Ti) < Start (Tj). Since Ti completes its execution before Tj started, the serializability
order is indeed maintained.

2. The set of data items written by Ti does not intersect with the set of data items read by Tj, and
Ti completes its write phase before Tj starts its validation phase (Start (Tj)<Finish
(Ti)<Validation (Tj)). This condition ensures that the writes of Ti and Tj do not overlap. Since
the writes of Ti do not affect the read of Tj, and since Tj cannot affect the read of Ti, the
serializability order is indeed maintained.

Read (B)
Read (B)
B=B-50
Write (A)
A=A +50

Read (A)

validate

Display (A + B)
validate
Write (B)
Write (A)

Consider transactions T1 and T2. Suppose that TS (T1) < TS (T2), then the validation phase
succeeds. Note that the writes to the actual variables are performed only after the validation phase of
T2, thus, T1 reads the old values of B and A, and this schedule is serializable.

The validation scheme automatically guards against cascading rollbacks, since the actual writes take
place only after the transaction issuing the write has committed.

5. Deadlock Handling

A deadlock can occur when two or more users are waiting for data locked by each other. Deadlocks
prevent some transactions from continuing to work.

A system is in a deadlock state if there exists a set of transactions such that every transaction in the
set is waiting for another transaction in the set.

There exists a set of waiting transactions {T0, T1, --, Tn} such that T0 is waiting for a data item that
is held by T1, and T1 is waiting for a data item that is held by T2, and and Tn-1 is waiting for a
data item that is held by Tn, and Tn is waiting for a data item that is held by TO. In such situation no
transaction can proceed.

For example, there are two transactions T1 and T2 are in deadlock state. T1 is waiting for transaction
T2 and T2 1s waiting for transaction T1.

read lock (Y)
read (Y)

read fock(X)
read (X)

write (X)
write lock (Y)

(B

\ERGmagglien

To recover from this problem the system should take some action such as rolling back some
transactions invoked in the deadlock. Rollback of a transaction can be partial, not the complete
transaction. Transaction may be rolled back till the point where it obtained a lock whose release will
resolve the deadlock.

P
4-15

There are two methods to deal with the deadlock problem. The first is the deadlock-prevention
protocol to ensure that the system will never enter a deadlock state. The second is deadlock-
detection and deadlock-recovery scheme. In this system will enter a deadlock state and then try to
recover it using the above scheme. In both methods transaction rollback takes place.

Deadlock prevention is preferred where the probability of deadlock state is relatively high.
Otherwise deadlock detection and recovery are more efficient. Deadlock detection and recovery
require some overheads which is runtime lost of the protocol.

51 Deadlock Prevention

There are two approaches to deadlock prevention. One approach
ensures that no cyclic waits can occur by ordering the requests for
locks, or requiring all locks to be acquired together. The other
approach is closer to deadlock recovery, and performs transaction
rollback instead of waiting for a lock, whenever the wait could
potentially result in a deadlock.

The simplest scheme under the first approach requires that each
transaction locks all its data items before it begins execution. Either
all are locked in one step or none are locked. There are two main
disadvantages to this protocol.

1. Itis not possible to predict, before the transaction begins, what data items need to be locked.

2. Data item utilization may be very low, since many of the data items may be locked but unused
for a long time.

Another scheme for preventing deadlocks is to impose a partial ordering of all data items, and to
require that a transaction lock a data item only in the order specified by the partial order.

A slight variation of this approach is to use a total order of data items. Once a transaction has locked
a particular item, it cannot request locks on items that precede that item in the ordering.

The second approach for preventing deadlocks is to use preemption and transaction rollbacks. In
preemption, when a transaction T2 requests a lock that is held by transaction T1, the lock granted
toT1 may be preempted by rolling back of T1, and granting of the lock to T2. To control the
preemption, we assign a unique timestamp to each transaction. The system uses these timestamps
only to decide whether a transaction should wait or roll back. Locking is still used for concurrency

control. If a transaction is rolled back, it retains its old timestamp when restarted. Two different
deadlock-prevention schemes using timestamp have been proposed:

1. The wait-die scheme is based on a non-preemptive technique. When transaction Ti requests a
data item currently held by Tj. Ti is allowed to wait only if it has a timestamp smaller than that
of Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled back (dies).

For example the transactions TO, T1, T2 have the timestamp 10, 15, 20 respectively. If TO
requests a data item held by T1 then TO will wait. If T2 requests a data item held by T1 then
T2 will rollback.

2. The wound-wait scheme is based on a preemptive technique and is a counterpart to the wait-
die scheme. When transaction Ti request a data item currently held by Tj, Ti is allowed to wait
only if it has timestamp larger than that of Tj (that is,Ti is younger than Tj). Otherwise, Tj is
rolled back(Tj is wounded by Ti).

The same example, with transaction TO, T1, and T2 have the timestamp 10, 15, 20 respectively. If TO
requests a data item held by T1 then the data item will be preempted from T1 and T1 will be
rolledback. If T2 requests a data item held by T1 then T2 will wait.

Whenever transactions are rolled back, it is important to ensure that there is no starvation, that is, no
transaction gets rolled back repeatedly and is never allowed to make progress.

Both the wound-wait and the wait-die schemes avoid starvation: At any time, there is a transaction
with the smallest timestamp. This transaction cannot be required to roll back in either scheme. Since
timestamps always increase, and since transactions are not assigned new timestamps when they are
rolled back, a transaction that is rolled back will eventually have the smallest timestamp. Thus, it
will not be rolled back again.

There are differences in the way the two schemes operate:

1. In the wait-die scheme, an order transaction must wait for a younger one to release its data
item. Thus, the order the transaction gets, the more it tends to wait. By contrast, in the would-
wait scheme, an older transaction never waits for a younger transaction.

2. In the wait-die scheme, if the transaction Ti dies and is rolled back because it requested a data
item held by transaction Tj, then Ti may reissue the same sequence of requests when it is
restarted. If the data item is still held by Tj, then Tj will die again. Thus Ti may die several
times before acquiring the needed data item. Contrast this series of events with what happens
in the wound-wait scheme. Transaction Ti is wounded and rolled back because Tj
requested a data item that it holds. When Ti is restarted and requests the data item now being
held by Tj, Ti waits, thus, there may be fewer rollbacks in the wound-wait scheme.

The major problem with both of these schemes is that unnecessary rollbacks may occur.

Deadlock Detection and Recovery

If a system does not use some protocol that ensures deadlock freedom, then a detection and recovery
scheme must be used. An algorithm that examines the state of system is invoked periodically to
determine whether a deadlock has occurred. If one has, then the system must attempt to recover from
the deadlock. To do so, the system must

1. Maintain information about the current allocation of data items to transactions, as well as any
outstanding data item requests.

2. Provide an algorithm that uses this information to determine whether the system has entered a
deadlock state.

3. Recover from the deadlock when the detection algorithm determines that a deadlock exists. -

5.2 Deadlock Detection

Deadlocks can be described specifically in terms of a directed graph called a wait-for graph. This
graph consists of a pair G= (V, E) where V is set a vertices and E is a set of edges. The set of vertices
consists of all the transactions in the system. Each element in the set E of edges is an ordered pair
Ti—>Tj. If Ti—>Tj is in E, then there is a directed edge from transaction Ti to Tj, implying that
transactions Ti is waiting for transactions Tj to release a data item that it needs.

When transaction Ti requests a data item currently being held by transaction Tj, then the edge Ti—>Tj
is inserted in the wait for graph. This edge is removed only when transaction Tj is no longer holding
a data item needed by transaction Ti.

A deadlock exists in the system if and only if the wait for graph contains a cycle. Each transaction
involved in the cycle is said to be deadlocked. To detect deadlocks, the system needs to maintain the
wait for graph and periodically to invoke an algorithm that searches for a cycle in the graph.

For example: Consider a wait for graph, which depicts the following situation

1. Transaction TO is waiting for transaction T1 and T2.
2. Transaction T2 is waiting for transaction T1.

3. Transaction T1 is waiting for transaction T3.

Since the graph has no cycle the system is not in deadlock state.

Suppose now that transaction T3 is requesting an item held by T2. The edge T3—T2 is added to the
wait for graph, resulting in the new system state in following diagram.

This time the graph contains the cycle.
Tl »>T3—> T2 > TI1.

Implying that transactions T1, T2 and T1 are all deadlocked.

If deadlock occurs frequently then the detection algorithm should be invoked more frequently than
usual. Data items allocated to deadlocked transactions will be unavailable to other transactions until
the deadlock can be broken. In addition the number of cycles in the graph may also grow. In the
worst case we could invoke the detection algorithm every time a request for allocation could not be
granted immediately.

5.3 Deadlock Recovery

When a detection algorithm determines that a deadlock exists, the
system must recover from the deadlock. The most common solution
is to roll back one or more transactions to break the deadlock. Three
actions need to be taken:

1. Selection of a victim: Given a set of deadlocked transactions,
we must determine which transaction (or transactions) to roll
back to break the deadlock.

, @ _

We should roll back those transactions that will incur the minimum cost. Unfortunately, the
term minimum cost is not a precise one. Many factors may determine the cost of rollback,

including:

a. How long the transaction has computed, and how much longer the transaction will
compute before it completes its designated task?

b. How many data items the transaction has used?

c. How many more data items the transaction needs for it to complete?

d. How many transactions will be involved in the rollback?

2. Rollback: Once we have decided that a particular transaction must be rolled back, we must
determine how far this transaction should be rolled back. The simplest solution is a total
rollback. Abort the transaction and then restart it. However it is more effective to roll back the
transaction only as far as necessary to break the deadlock. But this method requires the system
to maintain additional information about the state of all the running transactions.

3. Starvation: In a system where the selection of victim is based
pritharily on cost factors, it may happen that the same
transaction is always picked as a victim. As a result, this
transaction never completes its designed task. This situation is
called as starvation. We must ensure that a transaction can be
picked as a victim only a small finite number of times. The
most common solution is to include the number of rollbacks
in the cost factor.

Starvation refers to the use of all resources. As an example a poorly constructed database, poor
concurrency controls will result in dbms starvation as usage increases. In effect the database
subsystem is STARVING for resources because all available resources are being consumed. As a
result you will see a severe degrade in performance.

Solved Examples

1. The following is a list of events in an interleaved execution if set of transaction T0, T1, T2
with two phase locking protocol.

t1 T0 Lock (A,X)
t2 T1 Lock (B,S)
t3 T2 Lock (A,S)
t4 T0 Lock (C,X)
t5 T1 Lock (D,X)
t6 TO Lock (D,S)
t7 T1 Lock (C,S)
t8 T2 Lock (B,S)

Construct a wait for graph according to above request. Is there deadlock at any
instance? Justify.

Solution
First we convert set of instructions in the form of transactions

X(A)
S(B)
S(A)
X(C)
. X(D)
S(D)
$(C)
S(B)

To find deadlock we use wait for graph transaction are vertices and waiting for element is edges.

In the above wait for graph cycle occurs. Transaction T1 is waiting for TO to unlock C and
transaction TO is waiting for T1 to unlock D. Hence Deadlock occurs.

2. Following is the list of events in an interleaved execution if set T1, T2, T3, and T4 has
2PL (two phase lock). Is there a deadlock? If yes which transactions are involved in

deadiock.
Lock (A,X)
t2 T2 Lock (C,S)
t3 T3 Lock (A,S)
t4 T4 Lock (C,S)
t5 T1 Lock (B,X)
6 T2 Lock (C,X)
{7 T3 Lock (D,X)
18 T4 Lock (D,S)
Solution ’
First we convert set of instructions in the form of transactions.

0w
S(C)
S(A)
S(C)
X(B)
X(C)
X(D)
S(D)

To find deadlock situation we draw wait for graph. In vertices are transactions and edges are
transactions waiting for another transaction to release lock.

(@5

The above graph does not contain cycle therefore no deadlock occurs.

3. Following is the list of events in an interleaved execution if set T1, T2, T3, and T4 have
2PL (two phase lock). Is there a deadlock? If yes which transaction are involved in

deadlock.
t1 T1 Lock (A, X)
t2 T2 Lock (B,S)
13 T3 Lock (A,S)
t4 T4 Lock (B,S)
t1 T1 Lock (B,X)
2 T2 Lock (C,X)
t3 T3 . Lock (D,S)
t4 T4 Lock (D,X)
Solution

First we convert set of instructions in the form of transactions.

S(B)

S(A)
S(B)
X(B)
X(C)
S(D)

{ X(D).
To find deadlock situation we draw wait for graph. In vertices are transactions and edges are
transactions waiting for another transaction to release lock.

D

B

A

)5

A graph contains cycle like TI—>T4 —»T3—> T1..So deadlock is present.

4. Following is the list of events in an interleaved execution if set T1, T2, T3, and T4
assuming 2PL (two phase lock). Is there a deadlock? If yes which transactions are
involved in deadlock.

t1 T Lock (A, X)
t2 T2 Lock (B,X)
t3 T3 Lock (C,S)
t4 T4 Lock (A,S)
t5 T Lock (C,X)
6 T2 Lock (A,S)
t7 T3 Lock (D,X)
t8 T4 Lock (B,S)

Solution
First we convert set of instructions in the fqnn of transactions.

X(B)

S(A)
S(A)

S(B)

@‘: -

Wit far gadhwithacoyde

There is no deadlock at any transaction as there is no dependency on two consecutive transactions on
same variable. So there is no wait for variables

5. Following is the list of events in an interleaved execution if set T1, T2, T3, and T4
assuming 2PL. (two phase lock). Is there a deadlock? If yes which transactions are
involved in deadlock.

t1 ock (A, X)
2 Lock (B,S)
t3 Lock (A,S)
t4 Lock (B,S)
t5 Lock (B,X)
t6 Lock (C,X)
t7 Lock (D,S)

8 Lock (D,X)

i)

form of transactions.

Solution

First we convert set of instructions in_ th

T

S(B)
S(A)
S(B)
X(B)
X(C)
S(D)

X(D)
To find deadlock situation we draw wait for graph in vertices are transactions and edges are
transactions waiting for another transactions to release lock.

(—(@—(=
(™

From this wait for graph a transactions t7 and t8 are involved in a deadlock as both require D in
Shared (S) and Exclusive (X) mode.

6. Following is the list of events in an interleaved execution if set T1, T2, and T3 with 2PL.
(two phase lock). (Locks are released when transaction commits.) Is there a deadlock? If
yes which transactions are involved in deadlock. Construct wait for graph.

1 T1 Lock (A,S)
{2 T2 Lock (B,X)
3 T3 Lock (A, X)
t4 T1 Lock (C,S)
t5 T2 Lock (A,S)
t6 - T3 Lock (D,X)
t7 T1 DISP(A-C)
t8 T2 Lock (D,S)
t9 T3 Lock(C,X)
t10 T1 COMMIT

t11 T2 Lock (C,S)

Solution

Wait for graph will be as follows.

After COMMIT instruction locks are released. There is no deadlock situation in this wait graph.

7. Following is the list of events in an interleaved execution of
setT;, Tz, T; and T, assuming 2PL (Two Phase Lock). Is
there a Deadlock? If yes, which transactions are involved
in Deadlock?

Ty ock (B, S)
T2 Lock (A, X)
T3 Lock (C, S)
T4 Lock (B, 8)
Ty Lock (A, S)
T2 Lock (C, X)
T3 Lock (A, S)
T4 Lock (C, X)

Solution

S_LOCK(B)
X_LOCK(A)

S_LOCK(C)

S_LOCK(B)
S_LOCK(A)
X_LOCK(C)
S_LOCK(A)

X_LOCK(C)

(AS)

(AX)
(C.8)

(B.S)
(C.X)

8. Following is the list of events in an interleaved execution of
sets Ty, T2, T3, T4 assuming 2PL. Is there a deadlock? If

yes, which transactions are involved in deadlock?

Time | Transaction | GCode
t4 Ty LOCK(A,X)
t2 T, LOCK(B,X)
13 Ta LOCK(C,S)
tq Ts LOCK(A,S)
ts T4 LOCK(C,X)
ts T2 LOCK(A,S)
t7 T3 LOCK(D,X)
: ts Ts LOCK(B,S)
. Solution
X_LOCK(A)
X_LOCK(B)
: S_LOCK(C)
S_LOCK(A)
X_LOCK(C)
S_LOCK(A)
X_LOCK(D)
S_LOCK(B)

Wait for graph is drawn as follows for the above situation:

There 1s no cycle in wait for graph. So deadlock doesn’t exist in the above situation.

(C.X)

Ts)1 (D,X)

(C,S)

9. Following is the list of events in an interleaved execution of
set T}, T,,T; and T, assuming 2PL. Is there a Deadlock? If

yes, which transactions are involved in deadlock?

Solution

LOCK(A,X)
ty T LOCK(B,S)
ts Ts LOCK(A,S)
ts Ts LOCK(B,S)
ts T LOCK(B,X)
ts T LOCK(C,X)
tz Ts LOCK(D,X)
ts T LOCK(D,X)

Above wait-for-graph does not show cycle. So deadlock does not exists in the system.

X_LOCK(A)

X_LOCK(B)

S_LOCK(B)

X_LOCK(C)

S_LOCK(A)

X_LOCK(D)

S_LOCK(B)

X_LOCK(D)

AX) @ (AX)
(B.X) (B.X)
(AS)
o3 QE!
10. Following is the list of events in an interleaved execution of

Solution

First we will convert the given set of instructions in the form of transaction

sets T1,T>,T; and T, assuming 2PL(two phase lock).Is there
a deadlock? If yes which transaction are involved in
deadlock? :

ts Ty

f2 T2 Lock (B,S)
ts Ta Lock (A,S)
44 Ts Lock (B,S)
ts T Lock (B,X)
ts T2 Lock (C,X)
t7 T3 Lock (D,S)
ts T4 Lock (D,X)

Lock (A,X)

“X_Lock(A)

X_Lock(B)

S_Lock(B)

X_Lock(C)

S_Lock(A)

S_Lock(D)

S_Lock(B)

X_ Lock(D)

To check whether deadlock is in the system or not we will draw wait for graph. Transactions are
represented by vertices and waiting element by edges.

()
b

Cycle is present in wait for graph that means deadlock so deadlock is present. It is created by

transaction Ty, T3, T,.

11. Following is the list of events in an interleaved execution of
set T1 T2, T3 and T4, assuming 2PL (two phase lock). Is
there a deadlock? If yes, which transactions are involved
in deadlock?

e T Traneat oS
t1 T1 ock (A, X)
2 T2 Lock (C, S)
13 T3 Lock (A, S)
t4 T4 Lock (C, S)
t5 T1 Lock (B, X)
t6 T2 Lock (C, X)
t7 T3 Lock (D, X)
t8 T4 Lock (D, S)

Solution
From the given table we get,

T2 Lock(C, S)

T3 Lock(A,S) | T3> T1
T4 Lock(C, S))
T1 Lock(B, X}

T2 Lock{C,X) | T2> T4
T3 Lock(D, X}

T4 Lock(D,S) | T4 > T3

Since there is no cycle, there is no deadlock.

12. The following is the list of events in an interleaved
execution of set of transaction T0, T1, T2 with two phase
locking protocol:

t1 TO Lock (A, X)
t2 T1 Lock (B, S)
t3 T0 Lock (A, S)
t4 T1 Lock (C, X)
t5 T2 Lock (D, X)
t6 T0 Lock (D, S)
t7 T1 Lock (C, S)
{8 T2 Lock (B, S)

Construct a wait for graph according to above request. Is there deadlock at any
instance? Justify.

Solution .

From the given transactions, following wait-for graph results:

Since there is no cycle in the graph, no deadlock exists.

13. Following is the list of events in an interleaved execution of
set of transaction T1, T2, T3 and T4 assuming 2PL. Is
there a deadlock? If yes, which transactions are involved
in Deadlock?

t1 T1 Lock (A, X)
t2 T2 Lock (B, S)
t3 T3 Lock (A, S)
t4 T4 Lock (D, S)
t5 T1 Lock (B, X)
t6 T2 : Lock (C, X)
t7 T3 Lock (D, S)
t8 T4 Lock (C, X)

Solution

X_LOCK(A) |

S_LOCK(B)

S_LOCK(A)

S_LOCK(D)

X_LOCK(B)

X_LOCK(C)

S_LOCK(D)

X_LOCK(C)

Wait for graph is drawn as follows:

C.X)
A
(D,S)

Following is the list of events in an interleaved execution of
set of transaction T1,T2, T3 and T4 assuming 2PL. Is
there a deadlock? If yes, which transactions are involved
in deadlock?

t1 T1 Lock (A,X)
t2 T2 Lock (A,S)
t3 T3 Lock (A,S)
t4 T1 Lock (B,S)
t5 T2 Lock (B,X)
t6 T1 Lock (C,X)
t7 T2 Lock (D,S)
t8 T3 Lock (D,X)
Solution
X_LOCK(A)
S_LOCK(A)
S_LOCK(A)
S_LOCK(B)
X_LOCK(B)
X_LOCK(C)
S _LOCK(D)
X _LOCK(D)

Wait for graph is drawn as follows:

Cycle is present in wait for graph that means deadlock is present.
It is created by transactions T1, T3, T4.

[Oct.15,09 — 2M]
[Apr.2015 — 2M]
Define: i. upgrading ii. downgrading [Oct.2014 — 2M]
Define: i. W-timestamp ii. R-timestamp [Oct.2014 — 2M]
Define Growing Phase and Shrinking Phase. [Oct.12, 11, Apr.12 - 2M]

Define Deadlock.

What is deadlock? Explain how deadlock is recovered. [Oct.2010 — 2M]
Define Growing Phase. [Apr.2010 — 2M}

Marks
What is validation based protocol? Explain in detail the [Oct.2015 — 4M]
conditions for the validation test.

2

1

2

3

4.

5. Define Lock. List different types of Lock. [Oct.12, 09, Apr.11 - 2M]
6

7

4

1

[Oct.2015 - 4M]

[Oct.15, Oct.14 —4M]
[Oct.2015 — 4M)]

[Apr.2015 — 4M]
[Apr.15,0ct.12 — 4M]

[Apr.2015 — 4M]

[Apr.2015 — 4M]

B

Haw

The following is the list of events in an interleaved execution if set
T, Ty, T3, and T, assuming 2 PL. Is there a deadlock? If yes, which
transgctions are involved in deadlock?

t4 T1 Lock (A, X)
1 T, Lock (B, S)
t; T3 Lock (A, 8)
1y T4 Lock (B, S)
ts T4 Lock (C, S)
ts T, Lock (C, X)
t T3 Lock (D, S)
ts T4 Lock (D, X)

How is deadlock detected and how to recover deadlock?
Following is a list of events in an interleaved execution if set T, T,,
T;, and T, assuming 2 PL. Is there a deadlock? If yes, which

ty T, Lock (A, X)
o Tz Lock (B, S)
ts Ts Lock (A, S)
ty T4 Lock (C, S)
s T, Lock (C, X)
t T, Lock (B, X)
o4 Ts Lock (D, X)
ts Ts Lock (D, 8)

Explain Timestamp ordering protocol.

What is deadlock? Explain how deadlock is recovered.

Following is a list of events in an interleaved execution of set of
transactions T), T,, Ty, and T, with two phase locking protocol.

t T, Lock (A, X)
t T Lock (B, S)
ts Ta Lock (A, S)
4 T4 Lock (C, S)
ts T4 Lock (B, X)
ts T, Lock (C, X)
t; Ta Lock (D, S)

Lock (D, X)

ts Ta
Construct a wait for graph according to above request. Is there
deadlock at any instance? Justify.
Following is II list of events in an interleaved execution of set of
tions T;, T,, T hase locki

tran otocol.

t T, Lock (B, S)
> T, Lock (A, X}
ta Ts Lock (C, S)
t Ta Lock (B, S)
15 T, Lock (A, 8)
ts T, Lock (C, X)
ty Ts Lock (A, X)

Lock (C, §)

1 T
. Construct a wait for gra IJ’h according to above request. Is there
deadlock at any instance?

stify.

11.

12.
13.

14.
15.

Explain two phase locking protocol with example.

Following is the list of events in an interleaved execution of set of
transaction T1, T2, T3 and T4 assuming 2PL. Is there a deadlock? If

yes, which transactions are involved in Deadlock?

Lock (A, X
12 T2 Lock (B, S)
3 T3 Lock (A, S)
t4 T4 Lock (D, S)
t5 T1 Lock (B, X)
t6 T2 Lock (C, X)
t7 T3 Lock (D, S)
t8 T4 Lock (C, X)

Following is the list of events in an interleaved execution of set of
transactlon T1, T2, T3 and T4 assummg 2PL. Is there a deadlock? If

dl ck?

1 T1 Lock (A, X)
t2 T2 Lock (A,S)
3 T3 Lock (A,S)
t4 T1 Lock (B,S)
t5 T2 Lock (B,X)
t6 T1 Lock (C,X)
t7 T2 Lock (D,S)
8 T3 Lock (D,X)

Explain Validation based Protocol.

_Following is the list of events in an interleaved execution of setT,
T,, T and T, assuming 2PL (Two Phase Lock). Is there a
Deadlock? If yes, which transactions are involved in Deadlock?

t Ti Lock (B, S)
tz Tz Lock (A, X)
ts Ts Lock (C, S)
4 Ts Lock (B, S)
ts T4 Lock (A, S)
ts T2 Lock (C, X)
t7 Ts Lock (A, S)
ts Ta Lock (C, X)

What is Deadlock? How to prevent Deadlock.

Following is the list of events in an interleaved execution if
setT,,T,,T; and T, assummg 2PL.

which transactio

Is there a Deadlock? If yes,

ty T4 Lock (B, S)
ts T, Lock (A, X)
ts Ta Lock (C, S)
ts Ts Lock (B, S)
ts T4 Lock (A, S)
ts T2 Lock (C, X)
t7 T Lock (A, S)
ts T4 Lock (C, X)

[Oct.14,09.Apr.12— 4M]
[Oct.2014 — 4M]

[Oct.2014 —~ 4M]

[Oct.2012 — 4M]
[Oct.2012 — 4M)]

[Apr.12,10 - 4M]
[Apr.2012 —4M]

[Apr.2012 — 4M]

[Oct.2011 - 4M]
[Oct.2011 — 4M]

[Apr.11,0ct.10 — 4M]
[Apr.2011,0c¢t.10 — 4M]

[Apr.2011 — 4M]

[Apr.2011 — 4M]

18.

19.
20.

21.

Following is the list of events in an interleaved execution of sets
Ty, T2,T5,T4 assuming 2PL. Is there a deadlock? If yes, which
transactions are involved in deadlock?

(A,
LOCK(B,X)
LOCK(C,S)
LOCK(A,S)
LOCK(C,X)
LOCK(A,S)
LOCK(D,X)
: ts LOCK(B,S)
Explain strict two phase locking protocol with example.
Following is the list of events in an interleaved execution if set
T,,T,,T; and T, assuming 2PL(two phase lock). Is there a
deadlock? If yes, which transactions are involved in deadlock?

T .
T, Lock (B.X)
Ts Lock (C,S)
Ts Lock (A,S)
T: | Lock (CX)
T, Lock (A,S)
t Ts Lock (D,X)
i Ta Lock (B,S)
What is deadlock? Explain how deadlock is detected?
Define terms: i. Upgrading ii. Downgrading
iit. Lock point iv. Starvation

Following is the list of events in an interleaved execution if
setT,T»,T; and T, assuming 2PL. Is a there a deadlock? If yes
which transactions are involved in deadlock?

LOCK(A X)
t, T LOCK(C,S),
ts T LOCK(A,S)
t Ts LOCK(C,S)
ts T LOCK(B,X)
s T LOCK(C X)
t; T LOCK(D,X)
s T, LOCK(D,S)

Following is the list of events in an interleaved execution if set
T1,T,, Tsto aslsuming 2PL.Is there a deadlock ? If yes, which
transactions are ir

t Ty LOCK(A,X)

ty T LOCK(B,X)
ts Ts LOCK(C,S)
t Ts LOCK(A,S)
ts T LOCK(C.X)
s T LOCK(A,S)
t; Ts LOCK(D.X)
ts Ta LOCK(B.S)

®
vision

Ghnpi 5
RECOVERY
 SYSTEM

1. Introduction

A computer system like any other device (mechanical or electrical) is subject to failure from a
variety of reasons: disk crash, power outage, software error, and fire in the machine room or even
damage. In any failure information may be lost. So the database system must take some actions in
advance to ensure two main properties of the transactions like atomicity and durability. A primary
part of a database system is a recovery scheme that can restore the database to the consistent state
that existed before the failure. The recovery scheme also provide high availability i.e. it must
minimize the time for which the database is not usable after a crash.

2. Failure Classification

There are various types of failure that may occur in system each of which needs to be dealt with in a
different manner. The simplest type of failure is one that does not result in the loss of information

©
>/

in the system. The failures that are more difficult to deal with are
those resulting in a loss of information.

Following are the types of failure:
1. Transaction failure

2. System crash

3. Disk Failure

2.1 Tfansaction Failure

There are two types of errors that may cause a transaction to fail:

1. Logical error: The transaction can no longer continue with its normal execution because of
some internal condition such as bad input, data not found, overflow or resource limit
exceeded. ‘

2, System error: The system has entered an undesirable state (deadlock) so the transaction

cannot continue with its normal execution. The transaction can be reexecuted at a later time.

2.2 System Crash

There is a hardware malfunction or a bug in the database software or the operating system that
causes the loss of the content of volatile storage and brings transaction processing to a halt. The
content of nonvolatile storage remains intact and is not corrupted.

The assumption that hardware errors and bugs in the software bring the system to a halt but do not
corrupt the nonvolatile storage contents is known as the fail stop assumption.

2.3 Disk Failure

A disk block loses its content as a result of either a head crash or failure during a data transfer

operation. Copies of the data on other disks or archival backups on tertiary media such as tapes are
used to recover from the failure.

To determine how the system should recover from failures we need to identify the failure modes of
those devices used for storing data. Then we must consider how these failure modes affect the
contents of the database. We can then propose algorithms to ensure database consistency and
transactions atomicity despite failure. These algorithms are known as recovery algorithm.

1. Actions taken during normal- transaction processing to ensure that enough information exists
to allow recovery from failures.

2. Action taken after a failure to recover the database contents to a state that ensures database
consistency, transaction atomicity and durability.

3. Storage Structure

The various data items in the database may be stored and accessed in a number of different storage
media. To understand how to ensure the atomicity and durability properties of a transaction, we will
study how the data is actually sfored and what are their access methods.

3.1 Storage Types

There are different types of storage media depending on their
relative speed, capacity and resilience to failure they are classified
as:

1. Volatile storage: Information stored in volatile storage does
not usually survive system crashes. This memory access to
volatile storage is extremely fast both because of the speed of
the memory access itself and because it is possible to access
any data item in volatile storage directly. Examples of volatile
storage are main memory and cache memory.

2. Nonvolatile storage: Information stored in nonvolatile storage survives system crashes. Disks
are used for on line storage whereas tapes are used for archival storage. Both these are subject
to failure such as head crash. Nonvolatile storage is slower then volatile storage because disk
and tape devices are electromechanical rather then based entirely on chips, as is volatile
storage. Nonvolatile media are normally used only for backup data. Examples of nonvolatile
storage are disk and magnetic tapes.

3. Stable storage: Information stored in stable storage is never lost. This kind of storage is
practically impossible to obtain.

3.2 Data Access

The database system resides permanently on nonvolatile storage (Disks) and is partitioned into fixed
length storage units called blocks. Blocks are the units of data to and from disk and may contain
several data items. We can assume that no data item spans two or more blocks.

Transactions input information from the disk to main memory and then output the information back
onto the disk. The input and output operations are done in block units. The blocks stored on the disk
are called as physical blocks and the blocks stored temporarily in main memory are called as buffer
blocks. The areas of memory where blocks store temporarily are called the disk buffer.

Block movements between disk and main memory are done through the following two operations:
1. Input (B): Transfers the physical block B to main memory.

2. Output (B): Transfers the buffer block B to the disk and release the appropriate physical
block there. :

Following diagram illustrates this scheme.

Input (A)
€ A
Input (B
5 put (B) 5
Main memory Disk
Figure 5.1

Each transaction Ti has a private work area in which copies of all the data items accessed and
‘updated by Ti are kept. The system creates this work area when the transaction is initiated, the
system removes it when the transaction either commits or aborts. Each data item X kept in the work
area of transactions Ti is denoted by xi. Transactions Ti interacts with the database system by
transferring data to and from its work to the system buffer.

The transfers of data takes place using following two operations:

1. Read (X): Assigns the value of data item X to the local variable xi. It executes this operation
as follows:

a. If block Bx on which X resides is not in main memory it issues input (Bx).
b. It assigns to xi the value of X in buffer Block.

2. Write (X): Assigns the value of local variable xi to data item X in the buffer block. It executes
this operation as follows:

a. If block Bx on which X resides is not in main memory it issues input(Bx).
b. Itassigns the value of xi to X in buffer Bx.

The buffer block is written out to the disk by the buffer manager. It needs the memory space for
other purposes. It is not written to the physical block immediately.

When a transaction needs to access a data item X for the first time it must execute read(X). The
system then performs all updates to X on Xi. After the transaction access X for the final time, it must
execute write (X) to reflect the change to X in the database itself.

The output(Bx) operation for the buffer block Bx on which resides does not need to take effect ‘
immediately after write(X) is executed.

If the system crashes after the write(X) operation was executed but before output (Bx) was executed
the new value of X is never written to disk and thus is lost.

4. Recovery and Atomicity

Consider the transaction Ti that transfers "50 from account A to account B. The initial value of A and
B are "1000 and ‘2000 respectively. Suppose that a system crash has occurred during the execution
of Ti after output(BA) has taken place but before output(BB) was executed where BA and BB denote
the buffer blocks on which A and B resides. Since the memory contents were lost. We could invoke
two possible recovery procedures:

1. Reexecute: Account A will have value Rs.900 rather then the Rs.950. The system enters an
inconsistent state.

2. Do not reexecute: Account A will be Rs.950 but account B will be Rs.2000. The system
enters an inconsistent state.

This is because we are not preserving the atomicity property. So to achieve atomicity we must output
the information describing the modification to the stable storage without modifying the database
itself. Here we will assume that a transaction is active at a time.

4.1 Log-Based Recovery

The most widely used structure for recording database modifications
is the log. The log is a sequence of log records, which records all the
update activities in the database. There are several types of log
records, which are written in the system log. An update log record
describes a single database write. It has following fields:

1. Transaction identifier: This is the unique identifier of the
transaction that performs the write operation.

2. Data item identifier: Unit identifier of the data item written.
Normally this is the location on disk of the data item.

3. Old value: This is the value of the data item prior to the write.
4. New value: This is the value of the data item after the write.

The other special log records also exist to record different events during transaction processing such
as the start of a transaction and the commit or abort of a transaction.

The various types of log records are represented as:

1. <Ti, start>: It shows that transaction Ti has started.
Example: [start-transaction]: It indicates that transaction T has started execution.

2. <Ti Xj, V1, V2>: Transaction Ti has performed the write operation of data item Xi. Xj has
V1 value before write and will have value V2 after write.

Example [write-item, T, X, old-value, new-value]:- It indicates that transaction T has
changed the value of database item X from old value to new value.

3. <T1i, commit>: Transaction Ti has committed.

Example: [commit, T]: It indicates transaction T has completed successfully and the effect
will be committed (stored permanently) to the database.

4, <Ti, abort>: Transaction Ti has aborted.
Example: [abort, T]: It Indicates that transaction T has been aborted.

oo

Whenever transaction performs write it is essential that the log record for that write be created before
the database is modified. Once such a log record exists we can undo or redo the changes easily.

The log record is very useful for recovery from system and disk failures. This log must reside in
stable storage. The log contains a complete record of all database activity, so the size of the log will
become very long.

There are two techniques for using the log to ensure the transaction atomicity:
1. Deferred Database Modification
2. Immediate Database Modification

4.2 Deferred Database Modification

The deferred database techniques ensures transition atomicity by recording all database
modifications in the log but deferring the execution of all write operations of a transaction until the
transaction partially commits. A transaction is said to be partially committed when the final action of
a transaction is executed. We assume that transactions are executed serially.

When the transaction partially commits, the information on the log associated with the transaction is
used in executing the deferred writes. If the system crashes before the transaction completes its
execution or if the transaction aborts then the information on the log is simply ignored. When
transaction Ti is started then the record <Ti, start> is written in the log. All subsequent write
operations are recorded in the log.

When transaction Ti is partially committed then the last record <Ti, commit> is written in the log.
The system log is used to execute the different writes. If any system crash occurs during this
operation then also there will be no problem as system log is written on the stable storage.

Let us consider an example to understand this concept. Let TO transaction transfer Rs. 50 from
account A to account B.

Read (A)
A=A-50

Write (A)
Read (B)
B= B+50
Write (B)

5-8 %
e

Let T1 be a transaction that withdraws Rs.100 from account C.

Read (C)

C=C-100
Write (C)

Suppose that these two transactions are executed serially in the order TO followed by T1 and the
value of accounts A, B and C before the executions are Rs.1000, Rs.2000 and Rs.700 respectively.

The portion of the system log for transactions TO and T1 are.

<TO,start>
<T0,A,950>
<T0,B,2050>
<TO commit>
<T1,start>
<T1,C,600>
<T1 commit>

Porfion of the database log for transactions T0 and T1

There are various orders in which the actual outputs can take place to both the database system and
the log as a result of the execution of TO and T1. One such order is presented in following table. The
value of A is changed in the database only after the record <T0, A, 950> has been placed in the log.

<TO,start>
<T0,A,950>
<T0,B,2050>
<TO commit>

A= 950
B=2050
<T1,start>
<T1,C,600>
<T1 commit>
C=600

State of the log and database corresponding to T0 and T1

Using the log the system can handle any failure that results in the loss of information on volatile
storage. The recovery procedure is.

Redo (Ti) Sets the value of all data items updated by transaction Ti to the new values.
The redo operation must be idempotent i.e. executing it several times must be equivalent to once.

After failure the recovery subsystems consults the log to determine which transactions need to be
redone. Transaction Ti needs to be redone if and only if the log contains both the record <Ti, start>
and the <Ti, commit>. If the system crashes after the transaction completes its execution the
recovery scheme uses the information in the log to restore the system to a previous consistent state
after the transaction had completed.

Let us suppose that the system crashes before the completion of the transaction. So that we can see
how the recovery techniques restore the database to a consistent state.

<T0,start> <TO,start> <TO,start>
<TO0,A,950> <T0,A,950> <T0,A,950>
<T0,B,2050> <T0,B,2050> <T0,B,2050>
<T0 commit> <T0 commit>
<T1 start > <T1 start>
<T1,C,600> <T1,C,600>
<T1 commit>
(@) (b) (c)

Figure 5.2: The same log at three different times

Assume that the crash occurs after the log record write (B) operation of transaction TO has been
written in a stable storage. The log at the time of the crash appears in fig. 5.2 (a). When the system
comes back up no redo actions need to be taken since no commit record appears in the log. The
values of accounts A and B remain Rs.1000 and Rs.2000 respectively. The log records of the
incomplete transaction TO can be deleted from the log.

Now let us assume the crash comes just after the log records write (C) of transaction T1 has been
written to stable storage. In this case the log at the time of the crash is as in fig. 5.2(b). When the
system comes back up the operation redo (T0) is performed since the record <T0, commit> appears
in the log on the disk. After this operation is executed the values of accounts A and B are Rs.950 and
Rs.2050 respectively. The value of account C remains Rs.700. As before the log records of the
incomplete transaction T1 can be deleted from the log.

Finally assume that a crash occurs just after the log record <T1, commit> is written to stable storage.
The log at the time of this crash is as in fig. 5.2 (¢c). When the system comes back up two commit
records are in the log one for TO and one for T1. The system must perform operations redo (T0) and
redo (T1) in the order in which their commit records appear in the log. After the system executes
these operations the values of accounts A, B and C are Rs.950, Rs.2050 and Rs.600 respectively.

4.3 Immediate Database Modification

The immediate modification technique allows database modifications to be output to the database
while the transaction is still in the active state. These modifications written by active transactions are
called as uncommitted modifications. In case of transaction failure the undo operation is performed
on to the database. ‘

Before transaction Ti starts its execution the system writes <Ti, start> to the log. During its execution
any write (X) operation by Ti is preceded by the writing of the appropriate new update record to the
log. When Ti partially commits the system writes the record <Ti, commit> to the log.

Let us consider the banking example. The transaction TO and T1 executed one after the other in the
order TO followed by T1. The portion of the log containing the relevant information appears as
following.

<TO start>

<T0, A, 1000,950>
<T0, B, 2000,2050>
<TO commit>

<T1 start>

<T1 start>

<T1, C, 700, 600>

<T1 commit>

Portion of the system log corresponding to T0 and T1

Using the log the system can handle any failure that does not result
in the loss of information in nonvolatile storage. The recovery
procedure uses two steps.

1. Undo (Ti): restores the value of all data items updated by
transaction Ti to the old values.

2. Redo (Ti): sets the value of all data items updated by
transaction Ti to the new values.

The undo and redo operations must be idempotent to guarantee correct behavior even if a failure
occurs during the recovery process.

——

After a failure has occurred the recovery scheme determine which transactions need to be redone and
which need to be undone.

1. Transaction Ti needs to be undone if the log contains the record <Ti, start>, but does not
contain the record <Ti, commit>.

2. Transactions Ti needs to be redone if the log contains both record <Ti, start> and the record
<Ti, commit>,

Let us consider our banking example. The database system and log is as follows:

<TO,start>
<T0,A,1000,950>
<T0,B,2000,2050>
<TO commit>

A= 950
B=2050

<T0 commit>
<T1,start>
<T1,C,700,600>
C=600
<T1 commit>

State of system log and database corresponding to T0 and T1

Transaction TO and T1 executed one after other in the order TO followed by T1. Suppose that the
system crashes before the completion of the transaction.

We consider three cases. The state of the logs for each of these cases appears in figure below:

<T0,start> <TO0,start> <T0,start>
<T0,A,1000,950> <T0,A,1000,950> <T0,A,1000,950>
<T0,B,2000,2050> <T0,B,2000,2050> <T0,B,2000,2050>
<TQ, commit> <TO0,commit>
<T1, start > <T1 start>
<T1,C,700,600> <T1,C,700,600>
<T1, commit>

(a) (b) (c)

Figure 5.3: The same log shown at three different times

Let us assume that the crash occurs just after the log record for the step write (B) of transaction T0
has been written to stable storage (fig. 5.3(a)). When the system comes back up it finds the record

<TO0,start> in the log but no corresponding <T0,commit> record. So transaction TO must be undone,
hence so undo (T0) is performed. As a result the value of account A, B will be Rs.1000 and Rs. 2000

respectively.

Let us assume in second case where the crash has occurred just after the log record write (C) of
transaction T1 has been written in stable storage (fig 5.3(b)). When the system comes back up, two
recovery actions need to be taken. The operation undo (Ti) must be performed, since the record <T1
start> appears in the log, but there is no record <T1,commit>. The operation redo (T0) must be
performed, since the log contains the record <T0 Start > and the record <T0, commit>. At the end of
the entire recovery procedure, the values of accounts A, B and C are Rs.950, Rs.2050, and Rs.700,
respectively. Note that the undo (T1) operation is performed before the redo (T0). This order is very
important in the recovery procedure.

Finally, let us assume that the crash occurs Just after the log record <T1, commit> has been written
to stable storage (Fig (c)). When the system comes back up, both TO and T1 need to be redone since
the records <TO, start> and <T0, commit> appear in the log. After the system performs the recovery
procedures redo (T0) and redo (T1) the values in account A, B and C are Rs.950, Rs.2050 and
Rs.600 respectively.

4.4 Checkpoints

When a system failure occurs we must see the log to determine those
transactions that need to be redone and those that need to be undone.
We need to search the entire log to determine this information.

There are two problems with this:

I The search process is time consuming.

2. Most of the transactions have already written their updates into the database. But still we redo
them again and again. There will be no harm in doing this but the recovery procedure will take
a longer time.

To reduce such kind of overhead we use the concept of checkpoints.
To use checkpoints in the log following three Steps are used:

1. Output onto stable storage all log records currently residing in main memory.
2. Output to the disk all modified buffer blocks.
3. Output onto stable storage a log record <checkpoint>,

Transactions are not allowed to perform any update actions while a checkpoint is in progress. The
recovery procedure can start from the checkpoint record in the system log and not from first record
of the system log.

Consider- the transaction Ti that is committed prior to the check point record. Any database
modifications made by Ti must have been written to the database either prior to the checkpoint or as
part of the checkpoint itself. At recovery time there is no need to perform a redo operation on Ti.

After a failure has occurred the recovery scheme examines the log to determine the most recent
transaction Ti that started executing before the most recent checkpoint took place. It can find such a
transaction by searching the log backward from the end of the log until it finds the first <checkpoint>
record and continues to search backward until it finds the next <Ti start> record. This record
identifies a transaction Ti.

Once the system has identified transaction Ti the redo and undo operations need to be applied to only
transaction Ti and all transaction Tj that started executing after transaction Ti. The remaining part of
the log can be ignored and erased whenever desired.

For immediate modifications technique the recovery operations are:

1. For all transactions Ti in T that have no <Ti, commit> record in the log, execute undo (Ti).
2. For all transactions Ti in T such that the record <Ti commit> appears in the log, execute
redo(Ti).

The undo operation does not need to be applied when the deferred modification technique is being
employed.

Consider the set of transaction <T0, T1, ..., T100>. The most recent checkpoint took place during
the execution of transaction T65. So only transactions T65,...T100 need to be considered during the
recovery. Each of them needs to be redone if it has committed otherwise needs to be undone.

5. Recovery with Concurrent Transactions

Now we consider recovery if only a single transaction at a time is executing. Now we can modify
and extend this with multiple transactions. The number of concurrent transactions the system has a
single disk buffer and a single log. All transactions share the buffer blocks. We allow immediate
modification and permit a buffer block to have data items updated by one or more transactions.

5.1 Interaction with Concurrency control

The recovery scheme depends on the concurrency control scheme that is used. To roll back a failed
transaction we must undo the updates performed by the transaction. For example: Suppose that a
transaction TO has to be rolled and a data item X that was updated by TO has to be restored to its old
value. Using the log based schemes for recovery we restore the value by using the undo information
in a log record. Suppose now that a second transaction T1 has performed yet another update on X
before T1 is rolled back.

Therefore we require that if transaction T has updated a data item x no other transaction may update
the same data item until T has committed or rolled back. This can be achieved by using strict two
phase locking.

5.2 Transaction Rollback

Transactions can be aborted due to any failure. To restart, the aborted transaction is called as
rollback. Rollback restores the state of the database to the last commit point. This command also
releases the locks if any hold by the current transaction. The command used in SQL for this is
simply: ROLLBACK;

We roll back a failed transaction Ti by using the log. The system
scans the log backward for every log record of the form <Ti, Xj, V1,
V2> found in the log the system restores the data item Xj to its old
value V1. Scanning of the log terminates when the log record <Ti
start> is found.

If a strict two phase locking is used for concurrency control locks held by a transaction t may be
released only after the transaction has been rolled back. Once transaction T has updated a data item
no other transaction could have updated the same data item. ‘

5.3 Restart Recovery

When the system recovers from a crash it constructs two lists. The undo-list consists of transaction to
be undone and the redo-list consists of transactions to be redone.

, -

The system constructs the two lists as follows. Initially they are both empty. The system scans the
log backward examining each record until if finds the first <checkpoint> record.

1. For each record found by the form <Ti commit> it adds Ti to redo list.
2. . For each record found of the form <Ti start> if Ti is not in redo list then it adds Ti to undo list.

When the system has examined all the appropriate log records it checks the list L in the checkpoint
record. For each transaction Ti in L if Ti in not in redo list then it adds Ti to the undo list.

After the redo-list and undo-list are constructed the recovery proceeds as follows:

1. The system rescans the log from the most recent record backward and performs an undo for
each log record that belongs to transaction Ti on the undo list. Log records of transaction on
the redo-list are ignored in this phase. The scan stops when the <Ti start> records have been
found for every transaction Ti in the undo list.

2. The system locates the most recent <checkpoint L> record on the log. This step may involve
scanning the log forward if the checkpoint record was passed in step 1.
3. The system scans the log forward from the most recent <checkpoint L> record and performs

redo for each log record that belongs on a transaction Ti that is on the redo-list. It ignores log
records of transaction on the undo list in this phase.

After the system has undone all transactions on the undo list it redoes those transactions on the redo-
list. It is important in this case to process the log forward. When the recovery process has completed
transaction-processing resumes.

6. Remote Backup Systems

Traditional transaction processing systems are centralized or client-server systems. Such systems are
at risk to environmental disasters such as fire, flooding or earthquakes. There is need for transaction
processing system that can function in spite of system failures or environmental disaste’ Such
systems mostly provide high availability i.e. the time for which the system is unusable must be
extremely small.

We can achieve high availability by performing transaction processing at one site called the primary
site and having a remote backup site where all the data from the primary site are replicated.

The remote backup site is sometimes also called the secondary site. The remote site must be kept
synchronized with the primary site as updates are performed at the primary. We achieve
synchronization by sending all log records from primary site to the remote backup site. The remote
backup site must be physically separated from the primary.

When the primary site fails the remote backup site takes over processing. First it performs recovery
using its copy of the data from the primary and the log records received from the primary. In effect
the remote backup site performs recovery actions that would have been performed at the primary site
when the latter recovered. Standard recovery algorithms with minor modifications can be used for
recovery at the. remote backup site. Once recovery has been performed the remote backup site starts
processing transactions.

The performance of a remote backup system is better than the
performance of a distributed system with two-phase commit.
Following figure 5.4 shows the architecture of a remote backup
system.

Primary @ Backup

Log records

Figure 5.4:.Architecture of a remote backup system

Following are the several issues that must be addressed in designing a remote backup system:

1.

Detection of failure: As in failure-handling protocols for distributed system, it is important
for the remote backup system to detect when the primary has failed. Failure of communication
lines can fool the remote backup into believing that the primary has failed. To avoid this
problem, we maintain several communication links with independent modes of failure
between the primary and the remote backup. For example, in addition to the network
connection, there may be a separate modem connection over a telephone line, with services
provided by different telecommunication companies. These connections may be backed up via
manual intervention by operators, who can communicate over the telephone system.

Transfer of control: When the primary fails, the backup site takes over processing and
becomes the new primary. When the original primary site recovers, it-can either play the role
of remote backup, or take over the role of primary site again. In either case, the old primary
must receive a log of updates carried out by the backup site while the old primary was down.

The simplest way of transferring control is for the old primary to receive redo logs from the
old backup site, and to catch up with the updates by applying them locally. The old primary
can then act as a remote backup site. If control must be transferred back, the old backup site
can pretend to have failed, resulting in the old primary taking over.

Time to recover: If the log at the remote backup grows large, recovery will take a long time.
The remote backup site can periodically process the redo log records that it has received, and
can perform a checkpoint, so that earlier parts of the log can be deleted. The delay before the
remote backup takes over can be significantly reduced as a result.

A hot-spare configuration can make takeover by the backup site almost instantaneous. In this
configuration, the remote backup site continuously processes redo log records as they arrive,
applying the updates locally. As soon as the failure of the primary is detected, the backup site
completes recovery by rolling back incomplete transactions; it is then ready to process new
transactions.

Time to commit: To ensure that the updates of a committed transaction are durable, a
transaction must not be declared committed until its log records have reached the backup site.
This delay can result in a longer wait to commit a transaction, and some systems therefore
permit lower degrees of durability.

The degree of durability can be classified as follows:

i One — safe: A transaction commits as soon as its commit log record is written to stable
storage at the primary site.

The problem with this scheme is that updates of a committed transaction may not have
made it to the backup site, when the backup site takes over processing. So the updates
may appear to be lost. When the primary site recovers, the lost updates cannot be
merged in directly since the updates may conflict with later updates performed at the
backup site. ’

ii. Two- very safe: A transaction commits as soon as its commit log record is written to
stable storage at the primary and the backup site.

The problem with this scheme is that transaction processing cannot proceed if either the
primary or the backup site is down. So availability is actually less than in the single site
case.

iii. Two-safe: This scheme is the same as two-very-safe if both primary and backup sites
are active. If only the primary is active the transaction is allowed to commit as soon as
its commit log record is written to stable storage at the primary site.

This scheme provides better availability than does two-very-safe while avoiding the
problem of lost transactions faced by the one-safe scheme.

%—18:
@

e

.Solved Examples

1. Following are the log entries at the time of system crash?
[start-transaction, T1]
[write-item T1,D,20]
jcommit,T1]
[checkpoint] ‘ ‘
[start-transaction,T4]
[write-item,T4,B,15] ‘ |
[commit, T4] ,3
[start-transaction,T2]
[write-item,T2,B,25]
[start-transaction, T3]
[write-item,T3,A,30]
[write-item,T2,D,25] € system crash
If deferred update technique is used what will be the recovery procedure?
Solution

Using deferred update recovery technique two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crashes.

1. Apply Redo operations to all the write operations of the committed transactions from the log
in order in which they were written in log.

2. Transaction that are active and did not commit are effectively cancelled and resubmitted

Stepl: Transaction T1 committed before checkpoint so it is stored on secondary ~ storage.
The transaction T4 committed after checkpoint. So redo all operations of transactions T4.

Step 2: Transaction T2, T3 are active and they are not committed till system crash so
cancel/ignore transaction T2 and T3.

T
T4
—_ T2

T3 ————

S
Cd

System crash Time for executing transaction

Checkpoint

O—

2. Following are the log entries at the time of system crash?

[start-transaction, T1]

[read-item T1, D]

[write-item,T1,D,20]

[commit,T1]

[checkpoint]

[start-transaction T2]

[read-item ,T2,B] -

[write-item,T2,B,12]

[start-transaction, T3]

[write-item,T3,A,20]

[read-item,T2,D]

[write-item, T3, D,25] € system crash

If deferred update technique is used what will be the recovery procedure?
Solution
Using deferred update recovery technique two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Apply Redo operations to all the write operations of the committed transactions from the log
in order in which they were written in log.

2. Transaction that are active and did not commit are effectively cancelled and resubmitted.
Step1: Transaction T1 committed before checkpoint so no need to redo transactions. »

Step 2: Transaction T2, T3 are active and they are not committed till system crash so
cancel/ignore transaction T2 and T3.

T1

T2

T3

5
>

Checkpoint System crash Time for executing transaction

3. Following are the log entries at the time of system crash?
[start-transaction, T1]
[write-item T1,A,5]
[commit,T1] ‘ ;
[start-transaction,T2] ' |
[write-item,T2,B,10] ‘l
[write-item,T2,D,15] |
[commit,T2] 1
[checkpoint]
[start-transaction, T3] ' 4
[write-item,T3,B,20] ‘
[Start-transaction, T4]
[write-item, T4, C, 10]« system crash
If deferred update technique is used what will be the recovery procedure?

Solution

Using deferred update recovery technique two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash. :

1. Apply Redo operations to all the write operations of the committed transactions from the log
in order in which they were written in log.

2. Transaction that are active and did not commit are effectively cancelled and resubmitted

Stepl: Transaction T1, T2 committed before checkpoint so no need to consider transaction
T1 and T2.

Step 2: Transactions T3, T4 are active and they are not committed till system crash so
cancel/ignore transaction T3 and T4.

T1

T2 —
T3

T4 ————

5
r

Checkpoint System crash Time for executing transaction

, W

4. Following are the log entries at the time of system crash?
[start-transaction, T1]
[read-item T l,D]
-[write-item,T1,D,B]
[commit,T1]
[checkpoint]
[start-transaction,T2]
[read-item,T2,B]
[write-item,T2,B,12]
[start-transaction, T3]
[write-item,T3,A,20]
[write-item,T2,D]
[write-item, T1, D, 20] € system crash
If immediate update with checkpoint is used what will be the recovery procedure
Solution

Using immediate update method two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Undo all the write-item operations of the active transactions from the log using the undo
procedure.

2. Redo the write-item operations of the committed transactions from the log using redo
procedure

Stepl: Transaction Tl committed before checkpoint so mno mneed to consider
transaction T1.

Step 2: Transaction T2, T3 are active and they are not committed till system crash so undo all the
operations of transaction T2 and T3.

L T2
T3 ———

5
>

Checkpoint System crash Time for executing transaction

5. Following are the log entries at the time of system crash?

[start-transaction, T1)

[read-item T1,A]

[read-item,T1,D]

[write-item,T1,D,20]

[commit,T1]

[checkpoint]

[start-transaction,T2]

[read-item,T2,B]

[write-item,T2,B,12]

[start-transaction,T3]

[write-item,T3,C,30]

[commit,T2]

[read-item,T3,D]

[write-item, T3, D, 25]€ system crash

If immediate update with checkpoint is used what will be the recovery procedure?
Solution

Using immediate update method two lists of transactions are maintained by the system.
Check the committed transactions since the last check point and list out active transactions while
.system crash.

1. Undo all the write-item operations of the active transactions from the log using the undo
procedure.

2. Redo the write-item operations of the committed transactions from the log using redo
procedure.

Stepl: Transaction T1 committed before checkpoint so no need to consider transaction T1.
Step2: Transaction T2 committed after checkpoint so redo transaction T2. Transaction T3 is active
so undo it.

T4 ——— T2

T3

5
v

Checkpoint System crash Time for executing transaction

Iy -

R

— 35-23§ M—
. .

Following are the log entries at the time of system crash?
[start-transaction, T1]

[write-item T1,A,5]

[commit,T1]

[start-transaction,T2]
[write-item,T2,B,10]
[write-item,T2,D,6]

[commit, T2]

[checkpoint]

[start-transaction, T3]
[write-item,T3,B,20]
[start-transaction,T4]

[write-item, T4, C, 10] € system crash

If immediate update with checkpoint is used what will be the recovery procedure?

Solution

Using immediate update method two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1.

Undo all the write-item operations of the active transactions from the log using the undo

procedure. .

Redo the write-item operations of the committed transactions from the log using redo

procedure

Step1: Transaction T1and T2 are committed before checkpoint so no need to consider

transaction Tland T2.

Step 2: Transaction T3 and T4 are active so undo all operations of transaction T3 and T4.

T1
T2

T3

T4

S

4

Checkpoint System crash Time for executing transaction

7. Following are the log entries at the time of system crash?
[start-transaction, T1)
[start-transaction, T2]
[read-item,t1,A]
[write-item,T2,B,25,50]
[start-transaction, T3] |
[commit-transaction,T2]
[start-Transaction,T4]
[write-item,T1,C,100,115]
[commit-transaction,T1]
[write-item,T3,D,50,60] B
[read-item,T3,E]
[write-item,T3,D,60,75] -
[commit-transaction,T4]
[abort-transaction, T3] €~ system crash
If immediate update with checkpoint is used what will be the recovery procedure?
Solution
Using immediate update method two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

*

1. Undo all the write-item operations of the active transactions from the log using the undo
procedure.

2. Redo the write-item operations of the committed transactions from the log using redo
procedure

Step1: Transaction T1, T2 and T4 are committed so redo all operations of T1, T2 and T4.
Step2: Transaction T3 is active so undo all write operations of transaction T3.

T1
T2

T3

T4

5

System crash Time for executing transaction

8. Following are the log entries at the time of system crash?
[start-transaction, T1]
[write-item T1,D,20]
[ecommit,T1] -
[checkpoint]
[start-transaction,T4]
[write-item,T4,B,15]
[write-time, T4,A,20]
[commit, T4]
[start-transaction,T2]
[write-item,T2,B,25]
[start-transaction,T3]
[write-item,T3,A,30]
[write-item,T2,D,25]« system crash
If deferred update technique is used what will be the recovery procedure?
Solution ~

Using deferred update recovery technique two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

1. Apply Redo operations to all the write operations of the committed transactions from the log
in order in which they were written in log.

2, Transaction that are active and did not commit are effectively cancelled and resubmitted

Stepl: Transaction T1 committed before checkpoint so it is stored on secondary storage. The
transaction T4 committed after checkpoint. So redo all operations of transactions T4.

Step2: Transaction T2, T3 are active and they are not committed till system crash s so
cancel/ignored transaction T2 and T3.

T
T4

T2

T3

>

rd

Checkpoint System crash Time for executing transaction

9. Following are the log entries at the time of system crash:
[start_transaction, T,]

[write_item, T, A, 30]
[Commit, T,]
[checkpoint]
[start_transaction, T;]
[write_item, T, C, 50]
[commit , T3]
[start_transaction, T,]
[write_item, T, C, 40}
[start_transaction, T4}
[write_item, T4, B, 30]
[write_item, T,, D, 60] « System Crash

If differed update technique with checkpoint is used, what
will be the recovery procedure?

Solution

Deferred update recovery procedure maintains a list of committed transactions since the last check
point and active transaction at time of system crash.

It will REDO all write item operations of committed transactions from the log in order in which they
are written into the log. Active transactions which did not commit are cancelled and resubmitted.

In the above situation, transaction T; commits before check point so don’t consider that transaction.

Transaction T; must REDO because it is committed after check point. REDO [write_item, T, C, 50]
are done

Active transactions T, and T, has started their execution but they are not committed before system
crashes so both of them are cancelled.

3
T i 1
]]
1 1
S ¢ T A i
=0 ! T !
238 : 3
53 1 T, '
T I 1
1] © 3 o |
& s i T
] t
] i
. . > Transaction
t t, t execution
start check system period (t)

transaction point crash

10. Following are the log entries at the time of system crash:
[start_transaction, T,]
[write_item Ty, D, 20]
[commit T]
[check point]
[Start_transaction T,]
[write_item T,, B, 15]
[commit T,]
[start_transaction T,]
[write_item T,, B, 25]
[Start_transaction T;]
[write_item T3, A, 30] « System Crash
If deferred update technique is used, what will be the
recovery procedure?
Solution

Deferred update recovery procedure maintains list of committed transactions since the last check
point and active transaction at time of system crash.

It will REDO all write item operations of committed transactions from the log in order in which they
are written into the log. Active transactions which did not commit are cancelled and resubmitted.

A
Executing
transaction

T,
T,
T,
T, . .
i > Time for executing
‘0 1 . 2 transaction
Start Checkpoint System
transaction crash

In the above situation, transaction T; commits before check point so don’t consider that transaction.
Transaction T4 must REDO because it is committed after check point. REDO [write_item Ty, B, 15]

are done.

Active transactions T, and T; has started their execution but they are not committed before system
crashes so both of them are cancelled.

11. Following are log entries at the time system crash:
[start-transaction T]

[read-item T,,A]

3

{i\«.

[read-item T,,D]

[write-item,T,,D,20]

[commit T}

[check point]

[start- transaction T,]

[read- item T,,B]

[write-itemT,,B,12]
[start-transaction, T3]
[write-item,T;,C,30]

[read-item, T5,D]

[write-item, T5,D,25] <« system crash
If deferred update with check point is used, what will be recovery procedure?

Solution
Deferred update recovery techniques maintain two list as follows:

1. The committed transaction T since the last checkpoint (commit list).
ii. Active transactions (active list).

Redo all the write_item operations of the committed transactions from the log in order in which they
are written into the log.

The transactions that are active and did not commit are effectively cancelled and must be
resubmitted.

t i i
Executionof | |)
transaction T i i
1 Ir— 1
0 Ty i
l -
: Ty |
i]
i I
] l
1 I}
1 i
: : Transaction
L - > execution
) t b period (1)

Start '
transaction Checkpoint System crash

In this example, T, is committed before checkpoint (before time t,), so it is not necessary to consider
this transaction. '

Active transaction T, and Ts has started their execution but they are not committed before systems
crashes (time t,) so both of them are cancelled.

P
&—
12. Following are the log entries at the time of system crash.

[Start-transaction, T1]

[Write-item, T1, A, 10, 20]

[Commit, T1]

[Check point]

[Start-transaction, T2]

[Write-item, T2, B, 10, 15]

[Start-transaction, T3]

[Write-item, T;, C, 10, 25]

[Commit T2}

[Write-item, T3, D, 10, 30] <« system crash

If immediate update with checkpoint is used, what will be the recovery procedure?

Solution
Using immediate update method, two lists of transactions are maintained by the system.

Check the committed transactions since the last check point and list out active transactions while
system crash.

i. ~ Undo all the write_item operations of the active transactions from the log using the undo
procedure. '

ii. Redo the write_item operations of the committed transactions from the log using redo
procedure.

Step 1: Transaction T1 commiitted before checkpoint so no need to consider transaction T1.
Step2 : Transaction T2 committed after checkpoint so redo transactions T2. Transaction T3 is

active so undo it.

T1
T2
T3
Checkpoint System crash Time fo'r executing transaction
== = |

% PU Questions

2 Marks o 0
. .. b

1. List the fields of update log record. 19ct.2015 - 2M]
2. What is checkpoint? [Apr.15.0¢ct.12 — 2M]
3. List different types of Storage [Oct.14,12 — 2M]

Explain advantages and disadvantages of the remote backup [Oct.2015 — 4M]

system.

[Oct.2015 - 4M]

Write a note on Transaction Rollback.

2.
3. Explain immediate database modification with example [Oct.15, Apr.12,10 — 4M]

[Oct.2015 — 4M]

[Apr.15,0¢t. 12— 4M]

[Apr.15.0ct.11 - 4M]
[Apr.2015 — 4M]

[Oct.14, 11, 10, 09 — 4M]

[Oct. 14, 12, Apr.10 — 4M]
[Oct.2014 — 4M]

4.

~

8.
9.

10.

The following are the log entries at the time of system crash:
[start — transaction, T,]
[write — item, T), A, 100]
[write — item, T,, B, 100]
[commit, T,]
[checkpoint]
[start — transaction, T;]
[write — item, T3, D, 500] -
[commit, T;]
[start — transaction, T,]
[write — item, T,, E, 400]
[start — transaction, T;]
[write — item, T, C, 300] < System crash
If deferred update technique with checkpoint is used what will
be recovery procedure?
Explain various types of failures that may occur in system.
Explain deferred database modification technique with example.
Following are the log entries at the time of system crash.
[start — transaction, T,]
[write —item, T;, A, 100]
[commit, T]
[start — transaction, T;]
[write — item, T3, B, 200]
[checkpoint]
[commit, T3]
[start — transaction, T,]
[write — item, T, B, 300]
[start — transaction, T,]
[write — item, T4, D, 200]
[write — item, T, C, 300] <« System crash
If deferred update technique with checkpoint is used, what will
be the recovery procedure?
Explain different types of failures.
Explain Log-based recovery.
Following are the log entries at the time of system crash.
[Start-transaction, T1]
[Write-item, T1, A, 10, 20]
[Commit, T1] ’
[Check point]
[Start-transaction, T2]
[Write-item, T2, B, 10, 15]
[Start-transaction, T3]

11.
12.

13.
14.

15.

[Write-item, Ts, C, 10, 25]

[Commit T2]

[Write-item, T3, D, 10, 30] <« system crash

If immediate update with checkpoint is used, what will be the
recovery procedure?

Explain Remote Backup System with proper diagram.
Following are the log entries at the time of system crash:
[start_transaction, T,]

[write_item, Ty, A, 30]

[Commit, T)]

[checkpoint]

[start_transaction, T;]

[write_item, T, C, 50]

[commit , T5]

[start_transaction, T,]

[write_item, T,, C, 40]

[start transaction, T,]

[write_item, T, B, 30]

[write_item, T,, D, 60] «- System Crash

If differed update technique with checkpoint is used, what will
be the recovery procedure?

Explain different types of Storage Type.

Following are the log entries at the time of system crash:
[start_transaction, T;]

[read_item T, D]

[write_item T}, D, B]

[commit, T;]

[checkpoint]

[start_transaction, T,]

[read item T,, B]

[write_item T, B, 10]

[start transaction Ts] .

[write_item T,, B, 20] «~System crash

If immediate update with checkpoint technique is used what will

be the recovery procedure?
Define redo and undo operations.

[Oct.2012 — 4M]
[Oct.2012 — 4M]

[Apr.12,10 — 4M]
[Apr.2012 — 4M]

[Oct.2011 — 4M]

[Oct.2011 - 4M]
[Oct.11, Apr. 11 — 4M]

[Q¢t.2010 — 4M]
[Qct.2010 — 4M]

[Apr.2010 - 4M]
[Apr.2010 — 4M]

16.
17.

18.
19.

20.
21.

Write a note on Storage type.

Following are the log entries at the time of system crash:
[start-transaction, T;]

[Write-item Ty, D, 20]

[commit T,]

[check point]

[Start-transaction T,]

[write_item T4, B, 15]

[commit T,)

[start transaction T,]

[write-item T, B, 25]

[Start-transaction T;]

[write-item T5, A, 30] € System Crash

If deferred update technique is used, what will be the
recovery procedure?

Explain recovery using deferred update method.

Following are log entries at the time system crash:
[start-transaction T,]

[read-item T,,A]

[read-item T},D]

[write-item,T;,D,20]

[commit T]

[commit T;]

[check point]

[start- transaction T-]

[read- item T,,B]

[write-itemT,,B,12]

[start-transaction, T3]

[write-item,T5,C,30]

[read-item, T5,D]

[write-item, T3,D,25] « system crash

If deferred update with check point is used, what will be
recovery procedure?

Explain log-based recovery.
Explain different types of storages.

(7
vision

Y e sy

= ow

Suggestive Readings:

P W NP

10.

11.

12,

13.

Database Management Systems — Rajesh Narang — PHI Learning Pvt Ltd.

Database System Concepts by Silberschatz, Korth —Tata McGraw — Hill Publication.
An Introduction to Database Systems — Bipin Desai — Galgotia Publication.

Database Management System by Raghu Ramkrishnan — Tata McGraw — Hill
Publication. 5. SQL, PL/SQL : The Programming Language Oracle — Ivan Bayross — BPB
Publication.

Ramakrishnan, Raghu and Johannes Gehrke. 2003. Database Management Systems.
New Delhi: McGraw-Hill Education.

Silberschatz, Abraham, Henry Korth and S. Sudarshan. 2010. Database System
Concepts, 6th Edition. New York: McGraw-Hill.

Elmasri, Ramez and Shamkant B. Navathe. 2006. Fundamentals of Database Systems,
5th Edition. Boston: Addison-Wesley.

Ritchie, Colin. 2004.Relational Database Principles, 2nd Edition. New Delhi: Cengage
Learning India Pvt. Ltd.

Maheshwari, Sharad and Ruchin Jain. 2006. Database Management Systems
Complete Practical Approach. New Delhi: Firewall Media (Imprint of Laxmi
Publications (P) Ltd.

Coronel, Carlos M and Peter Rob. 2006. Database Systems: Design, Implementation,
and Management, 7th Edition. US: Cengage Learning.

Date, C. J. 2003. An Introduction to Database Systems, 8th Edition. Boston: Addison-
Wesley.

Leon, Alexis and Mathews Leon. 2008. Database Management Systems, 1st Edition.
New Delhi: Vikas Publishing House Pvt. Ltd..

Vaswani, Vikram. 2003. MySQL: The Complete Reference, 1st Edition. New York:

McGraw Hill Professional

	60320c78908bf348da55b21396da8b5fd11a0fd9dcf4b335512c39264a6ff857.pdf
	3414be6c8e6cecb5669c2d8365abdd37efe398533f6964c834d46139d12ba2c5.pdf
	1ad2e8f6b2b169485d96d2af0911ca2c23b7ed679a2792d002f0e4148dd6216b.pdf
	04c5817f8c0ba4b28192c4e23d5eaa7ac4d6684653b3c4db2f3e91464da5b5e7.pdf
	Microsoft Word - Relational Database Management System BCA SEM-3

